Beach Monazites from Alleppey: A Window to the Trivandrum Block, Southern India

Authors

  • Department of Geology & Geophysics, I.I.T., Kharagpur - 721 302
  • Department of Geology & Geophysics, I.I.T., Kharagpur - 721 302
  • Geological Survey of India, Bangalore – 560 078
  • Geological Survey of India, Raipur

DOI:

https://doi.org/10.1007/s12594-017-0596-9

Abstract

Detrital monazites can be used to reconstruct the tectonothermal history of their provenance. Dating of beach monazites from Alleppey by EPMA U-Th-Pbtotal technique using the centroid method demonstrates that the ages recorded by even a small number of 28 analyses from a single thin section grain mount can potentially reveal a considerable portion of the tectonothermal history of the Trivamdrum block. Three monazite populations were identified that yielded ages 605 ± 9, 575 ± 23 and 548 ± 11 Ma, which have their more or less exact counterparts reported from the Trivandrum Block. One monazite grain yielded random Paleoproterozoic ages ranging from 1756 Ma to 1345 Ma representing similar ages which earlier have been interpreted as due to differential Pb-loss from >2000 Ma monazites during the late Neoproterozoic-Cambrian metamorphism.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2017-03-01

How to Cite

Pruseth, K. L., Sahoo, D., Kumar, B., & Kumar, V. (2017). Beach Monazites from Alleppey: A Window to the Trivandrum Block, Southern India. Journal of Geological Society of India, 89(3), 240–246. https://doi.org/10.1007/s12594-017-0596-9

References

Bartlett, J.M., Dougherty-Page, J.S., Harris, N.B.W., Hawkesworth, C.J. and Santosh, M. (1998) The application of single zircon evaporation and Nd model ages to the interpretation of polymetamorphic terrains: an example from the Proterozoic mobile belt of south India. Contrib. Mineral. Petrol., v.131, pp.181–195.

Bhaskar Rao, Y.J., Janardhan, A.S., Vijaya Kumar, T., Narayana, B.L., Dayal, A.M., Taylor, P.N. and Chetty, T.R.K. (2003) Sm–Nd model ages and Rb–Sr isotope systematics of charnockites and gneisses across the Cauvery Shear Zone, southern India: implications for the Archaean-Neoproterozoic boundary in the southern granulite terrain. In: M. Ranmakrishnan (Ed.), Tectonics of Southern Granulite Terrain. Mem. Geol. Soc. India, no.50, pp.297–317.

Bindu, R.S., Yoshida, M. and Santosh, M. (1998) Electron microprobe dating of monazite from the Chittikara granulite, South India: evidence for polymetamorphic events. Jour. Geosci., Osaka City Univ., v.41, pp.77– 83.

Böhm, M., van der Gugten, M., Pin, C., Paquette, J.L., Braun, I. and Kriegsman, L.M. (2003) Isotope geology and U-Pb geochronology of granites and high grade metamorphic rocks from the Achankovil Unit, South India. European Jour. Mineral., v.15 (Beihefte), pp.24.

Brandt, S., Schenk, V., Raith, M.M., Appel, P., Gerdes, A. and Srikantappa, C. (2011) Late Neoproterozoic P–T evolution of HP-UHT granulites from the Palni Hills (South India): new constraints from phase diagram modelling, LA-ICP-MS zircon dating and in-situ EMP monazite dating. Jour. Petrol., v.52, pp.1813–1856.

Braun, I. (2006) Pan-African granitic magmatism in the Kerala Khondalite Belt, southern India. Jour. Asian Earth Sci., v.28, pp.38–45.

Braun, I., Cenki-Tok, B., Paquette, J.-L. and Tiepolo, M. (2007) Petrology and U–Th–Pb geochronology of the sapphirine-quartz-bearing metapelites from Rajapalayam, Madurai Block, Southern India: evidence for polyphase Neoproterozoic high-grade metamorphism. Chem. Geol., v.241, pp.129–147.

Braun, I. and Kriegsman, L.M. (2003) Proterozoic crustal evolution of southernmost India and Sri Lanka. In: M. Yoshida, B.F. Windley and S. Dasgupta (Eds.), Proterozoic East Gondwana: supercontinent assembly and breakup. Geol. Soc. London Spec. Publ., v.206, pp.169–202.

Braun, I., Montel, J. -M. and Nicollet, C. (1998) Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chem. Geol., v.146, pp.65–85.

Braun, I., Raith, M. and Ravindra Kumar, G.R. (1996) Dehydration-melting phenomena in leptynitic gneisses and the generation of leucogranites: a case study from the Kerala Khondalite Belt, southern India. Jour. Petrol., v.37, pp.1285–1305.

Buhl, D. (1987) U-Pb und Rb-Sr-Altersbestimmungen und Untersuchungen zum Strontiumisotopenaustausch an Granuliten Südindiens. Unpublished Ph.D. Thesis, Universität Münster.

Cenki, B., Braun, I. and Bröcker, M. (2004) Evolution of the continental crust in the Kerala Khondalite Belt, southernmost India: evidence from Nd isotope mapping, U–Pb and Rb–Sr geochronology. Precambrian Res., v.134, pp.275–292.

Chacko, T., Ravindra Kumar, G.R., Meen, J.K. and Rogers, J.J. (1992) Geochemistry of high-grade supracrustal rocks from the Kerala Khondalite Belt and adjacent massif charnockites, South India. Precambrian Res., v.55, pp.469–489.

Cherniak, D.J., Watson, E.B., Grove, M. and Harrison, T.M. (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim. Cosmochim. Acta, v.68, pp.829–840.

Choudhary, A.K., Harris, N.B.W., Van Calsteren, P. and Hawkesworth, C.J. (1992) Pan-African charnockite formation in Kerala, South India. Geol. Mag., v.129, pp.257–264.

Cocherie, A. and Albarede, F. (2001) An improved U-Th-Pb age calculation for electron microprobe dating of monazite. Geochim. Cosmochim. Acta, v.65, pp.4509–4522.

Collins, A.S., Santosh, M., Braun, I. and Clark, C. (2007) Age and sedimentary provenance of the Southern Granulites, South India: U–Th–Pb SHRIMP secondary ion mass spectrometry. Precambrian Res., v.155, pp.125–138.

Crowley, J.L., Chatterjee, N., Bowring, S.A., Sylvester, P.J., Myers, J.S. and Searle, M.P. (2005) U-(Th)-Pb dating of monazite and xenotime by EMPA, LA-ICPMS, and IDTIMS: examples from the Yilgarn Craton and Himalayas. Proc. 15th Ann. Goldschmidt Conf., Abstr., pp.A19.

Geological Survey of India (1994) Project Vasundhara, Generalised Geological Map, Bangalore.

Ghosh, J.P. (1999) U-Pb geochronology and structural geology across major shear zones of the Southern Granulite Terrain of India and organic carbon isotope stratigraphy of the Gondwana coal basins of India: their implications for Gondwana studies. Unpublished Ph. D. thesis , University of Cape Town, South Africa.

Ghosh, J.G., de Wit, M.J. and Zartman, R.E. (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India,with implications for Gondwana studies. Tectonics, v.23 (TC3006).

Harris, N.B.W., Santosh, M. and Taylor, P.N. (1994) Crustal evolution in south India: constraints from Nd isotopes. Jour. Geol., v.102, pp.139–150.

Hazarika, P., Pruseth, K.L. and Mishra, B. (2015) Neoarchean greenstone metamorphism in the Eastern Dharwar Craton, India: constraints from monazite U-Th-Pb total ages and P-T pseudosection calculations. Jour. Geol., v.123, pp.429–461.

Jayananda, M., Janardhan, A.S., Sivasubramanian, P. and Peucat, J.J. (1995) Geochronological and isotopic constraints on granulite formation in the Kodaikanal area, southern India. Mem. Geol. Soc. India, no..34, pp.373– 390.

Johnson, T.E., Clark, C., Taylor, R.J.M., Santosh, M. and Collins, A.S. (2015) Prograde and retrograde growth of monazite in migmatites: an example from the Nagercoil Block, southern India. Geosci. Frontiers, v.6, pp.373–387.

Kröner, A., Santosh, M. and Wong, J. (2012) Zircon ages and Hf isotopic systematics reveal vestiges ofMesoproterozoic to Archaean crustwithin the late Neoproterozoic–Cambrian high-grade terrain of southernmost India. Gondwana Res., v.21, pp. 876–886.

Montel, J.M., Foret, S., Veschambre, M., Nicollet, C. and Provost, A. (1996) Electron microprobe dating of monazite. Chem. Geol., v.131, pp.37–53.

Plavsa, D., Collins, A.S., Foden, J.F., Kropinski, L., Santosh, M., Chetty, T.R.K. and Clark, C. (2012) Delineating crustal domains in Peninsular India: age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block. Precambrian Res., v.198–199, pp.77–93.

Rajesh, H.M. and Santosh, M. (1996) Alkaline magmatism in peninsular India. In: M. Santosh and M. Yoshida (Eds.), The Archaean and Proterozoic terrains in southern India within East Gondwana. Gondwana Res. Group Mem., v.3, pp.91–115.

Santosh, M., Collins, A.S., Tamashiro, I., Koshimoto, S., Tsutsumi, Y. and Yokoyama, K. (2006a) The Timing of ultrahigh-temperature metamorphism in Southern India: U–Th–Pb electron microprobe ages from zircon and monazite in sapphirine-bearing granulites. Gondwana Res., v.10, pp.128–155.

Santosh, M., Morimoto, T. and Tsutsumi, Y. (2006b) Geochronology of the khondalite belt of TrivandrumBlock, Southern India: electron probe ages and implications for Gondwana tectonics. Gondwana Res., v.9, pp.261–278.

Santosh, M., Tagawa, M., Yokoyama, K. and Collins, A.S. (2006c) U–Pb electron probe geochronology of the Nagercoil granulites, Southern India: implications for Gondwana amalgamation. Jour. Asian Earth Sci., v.28, pp.63–80.

Santosh, M., Tanaka, K., Yokoyama, K. and Collins, A.S. (2005) Late Neoproterozoic-Cambrian felsic magmatism along transcrustal shear zones in southern India: U–Pb electron microprobe ages and implications for the amalgamation of the Gondwana supercontinent. Gondwana Res., v.8, pp.31–42.

Santosh, M., Yokoyama, K., Biju-Sekhar, S. and Rogers, W.J.J. (2003) Multiple tectonothermal events in the granulite blocks of southern India revealed fromEPMA dating: implications on the history of supercontinents. Gondwana Res., v.6, pp.29–63.

Sato, K., Santosh, M., Tsunogae, T., Kon, Y., Yamamoto, S. and Hirata, T. (2010) Laser ablation ICP mass spectrometry for zircon U–Pb geochronology of ultrahigh-temperature gneisses and A-type granites from the Achankovil Suture Zone, southern India. Jour. Geodyn., v.50, pp.286–299.

Soman, K., Narayanaswamy and van Schmus, W.R. (1995) Preliminary U-Pb zircon ages of high-grade rocks in southern Kerala, India. Jour. Geol. Soc. India, v.45, pp.127–136.

Srikantappa, C., Raith, M. and Spiering, B. (1985) Progressive charnockitization of a leptynite-khondalite suite in southern Kerala, India: evidence for formation of charnockites through decrease in fluid pressure? Jour. Geol. Soc. India, v.26, pp.849–872.

Suzuki, K. and Adachi, M. (1991) Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-Utotal Pb isochron ages of monazite, zircon and xenotime. Geochem. Jour., v.25, pp.357– 376.

Suzuki, K. and Kato, T. (2008) CHIME dating of monazite, xenotime, zircon and polycrase: protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Res., v.14, pp.569–586.

Taylor, R.J.M., Clark, C., Fitzsimons, I.C.W., Santosh, M., Hand, M., Evans, N. and McDonald, B. (2014) Post peak, fluid mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India. Contrib. Mineral. Petrol., v.168, pp.1–17.

Teufel, S. and Heinrich, W. (1997) Partial resetting of the U–Pb isotope system in monazite through hydrothermal experiments: an SEM and U–Pb study. Chem. Geol., v.137, pp.273–281.

Unnikrishnan-Warrier, C., Santosh, M. and Yoshida, M. (1995) First report of Pan-African Sm–Nd and Rb–Sr mineral isochron ages from regional charnockites of southern India. Geol. Mag., v.132, pp.253–260.

Upadhyay, D. and Pruseth, K.L. (2012) Fluid-induced dissolution breakdown of monazite from Tso Morari complex, NW Himalayas: evidence for immobility of trace elements. Contrib. Mineral. Petrol., v.164, pp.303–316.

York, D. (1966) Least-square fitting of a straight line. Can. Jour. Phys., v.44, pp.1079–1088.

York, D., Evensen, N.M., Martí­nez, M.L. and De Basabe Delgado, B. (2004) Unified equations for the slope, intercept, and standard errors of the best straight line. Amer. Jour. Phys., v.72, pp.367–375.

Most read articles by the same author(s)