Anisotropy of Magnetic Susceptibility and Rock Magnetic Applications in the Deccan Volcanic Province based on some Case Studies

Authors

  • Department of Geology, Savitribai Phule Pune University, Pune - 411 007
  • Department of Geology, Savitribai Phule Pune University, Pune - 411 007
  • Department of Geology, Savitribai Phule Pune University, Pune - 411 007
  • Indian Institute of Geomagnetism, New Panvel, Navi Mumbai - 410 218
  • Department of Geology, Savitribai Phule Pune University, Pune - 411 007
  • Department of Geology, Savitribai Phule Pune University, Pune - 411 007
  • Department of Geology, Savitribai Phule Pune University, Pune - 411 007
  • CSIR-National Geophysical Research Institute, Hyderabad - 500 007

DOI:

https://doi.org/10.1007/s12594-017-0672-1

Abstract

Anisotropy of Magnetic Susceptibility (AMS) as a tool has been explored here to investigate the nature of petrofabrics in Deccan Volcanic Province (DVP) of west-central Indian region by representative sampling in typical pahoehoe and rubbly pahoehoe lava flows, dykes within flows, shear zone and the impact crater units. The rock magnetic analysis indicate varying degree of concentration of titanomagnetite compositions dominated by multi domain (MD) to pseudo single domain (PSD) grains favoring shape anisotropy of minerals that form primary fabrics. The pahoehoe type lava flows shows planar oblate fabrics without any preferred orientation of principle susceptibility axis (K1) depicting crystal settling (of magnetic grains) as chief mechanism of fabric development. The rubbly pahoehoe type lava flow exhibit prolate fabrics with well clustered maximum susceptibility axis within horizontal to sub-horizontal planes depicting their response to viscosity shear. The dykes show well clustered K1 parallel to it's plane locked during rapid contractional cooling. The sampling at Lonar impact crater was unable to trace any clear fabric due to impact/shock induced deformation and rather preserve the primary fabrics. Further, the shear zone depict random fabrics demanding more detailed and systematic sampling in both the cases. The present investigation infer that the magnetic mineralogy and magnetic fabric variations in the DVP are controlled by the flow mechanism and style of cooling that is characteristic of the given flow unit or dyke and any secondary or superimposed fabric needs to be examined by critical sampling strategy. While more detailed attempts are required to establish the AMS as a tool to record various aspects including the flow dynamics and rate of effusion in the vast terrain of DVP; the present approach is useful to characterize and correlate the lava flow units and dyke occurrences.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2017-06-01

How to Cite

Sangode, S. J., Sharma, R., Mahajan, R., Basavaiah, N., Srivastava, P., Gudadhe, S. S., … Venkateshwarulu, M. (2017). Anisotropy of Magnetic Susceptibility and Rock Magnetic Applications in the Deccan Volcanic Province based on some Case Studies. Journal of Geological Society of India, 89(6), 631–642. https://doi.org/10.1007/s12594-017-0672-1

References

Agarwal, A., Kontny, A., Srivastava, D.C. and Greiling, R.O. (2015) Shock pressure estimates in target basalts of a pristine crater: A case study in the Lonar crater, India. Geol. Soc. Amer. Bull., v.128 no.1-2, pp.19-28, doi: 10.1130/B31172.1.

Akimoto, S., Nagata, T. and Katsura, T. (1957) The TiFe2O5”Ti2FeO5 Solid Solution Series, Nature, v.179, pp.37–38, doi:10.1038/179037a0.

Arif, M., Basavaiah, N., Misra, S. and Deenadayalan, K. (2012) Variations in magnetic properties of target basalts with the direction of asteroid impact: Example from Lonar crater, India: Meteoritics & Planetary Science, v.47, no.8, pp.1305–1323, doi: 10.1111 /j.1945-5100.2012.01395.x.

Aubourg, C., Rochette, P. and Vialon, P. (1991) Subtle stretching lineation revealed by magnetic fabric of Callovian–Oxfordian black shales (French Alps). Tectonophysics, v.185, pp.211–223.

Bascou, J., Camps, P. and Marie Dautria, J. (2005) Magnetic versus crystallographic fabrics in a basaltic lava flow. Jour. Volcanol. Geotherm. Res., v.145(1), pp.119-135.

Beane, J.E., Turner, C.A., Hooper, P.R., Subbarao, K.V. and Walsh, J. N. (1986) Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India; Bull. Volcanol., v.48 pp.61-83

Bhattacharji, J. C. (1970) A Geodetic and geophysical study of the Koyna earthquake region. Jour. Indian Geophy. Union, v.7, pp.17-27.

Bleil, U. and Petersen, N. (1979) Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature, v.301, pp.384-388.

Boiron, T., Bascou, J., Camps, P., Ferré, E. C., Maurice, C., Guy, B., M-C Gerbe and Launeau, P. (2013) Internal structure of basalt flows: insights from magnetic and crystallographic fabrics of the La Palisse volcanics, French Massif Central. Geophys. Jour. Internat., doi:10.1093/gji/ggs115.

Bondre, N.R., Duraiswami, R.A. and Dole, G. (2004) Morphology and emplacement of flows from the Deccan Volcanic Province, India. Bull.Volcanol., v.66, pp.29–45.

Borradaile, G.J. (1988) Magnetic susceptibility, petrofabrics and strain. Tectonophysics, v.156(1), pp.1-20.

Borradaile, G.J. and Henry, B. (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci. Rev., v.42(1), pp.49-93.

Brown, H.C., Khan, M.A. and Stacey, F.D. (1964) A search for flow structure in columnar basalt using magnetic anisotropy measurements. Pure Appld. Geophys., v.57(1), pp.61-65.

Brown, R.J., Blake, S., Bondre, N.R., Phadnis, V.M. and Self, S. (2011) ía lava flows in Deccan Volcanic Province, India and their significance for the nature of continental flood basalt eruptions. Bull. Volcanol., v.73(6), pp.737–752.

Buddington, A. F. and Lindsley, D. H. (1964). Iron-Titanium oxide minerals and synthetic equivalents. Jour. Petrol., v.5, pp.310-357.

Callot, J.P., Geoffroy, L., Aubourg, C., Pozzi, J.P. and Mege, D. (2001) Magma flow directions of shallow dykes from the East Greenland volcanic margin inferred from magnetic fabric studies. Tectonophys., v.335, pp.313-329.

Callot, J.P. and Guichet, X. (2003) Rock texture and magnetic lineation in dykes: a simple analytical model. Tectonophysics, v.366(3), pp.207-222.

Carmichael, I.S.E. and Nicholls, J. (1967) Iron-titanium oxides and oxygen fugacities in volcanic rocks. Jour. Geophys. Res., v.72, pp.4665-4687.

Cañón-Tapia, E., Walker, G.P. and Herrero-Bervera, E. (1995) Magnetic fabric and flow direction in basaltic pahoehoe lava of Xitle volcano, Mexico. Jour. Volcanol. Geotherm. Res., 65(3), pp.249-263.

Cañón-Tapia, E., Walker, G. P. and Herrero-Bervera, E. (1996) The internal structure of lava flows”insights from AMS measurements I: Near-vent a'a. Jour. Volcanol. Geotherm. Res., v.70(1), pp.21-36.

Cañón-Tapia, E. (1996) Single-grain versus distribution anisotropy: a simple three-dimensional model. Phys. Earth Planet. Inter., v.94(1), pp.149-158.

Cañón-Tapia, E. (2004) Anisotropy of magnetic susceptibility of lava flows and dykes: A historical account. Geol. Soc. London, Spec. Publ., v.238(1), pp.205-225.

Cañón-Tapia, E. and Chávez-ílvarez, J. (2004) Theoretical aspects of particle movement in flowing magma: implications for the anisotropy of magnetic susceptibility of dykes. Geol. Soc. London, Spec. Publ., v.238(1), pp.227-249.

Cañón-Tapia, E. and Herrero-Bervera, E. (2009) Sampling strategies and the anisotropy of magnetic susceptibility of dykes. Tectonophysics, v.466(1), pp.3-17.

Cashman, K., Thornber, C. and Kauahikaua, J. (1999) Cooling and crystallization of lava in open channels, and the transition of pahoehoe lava to ‘a'a, Bull. Volcanol., v.61, pp.306–323.

Chenet, A.L., Quidelleur, X., Fluteau, F., Courtillot, V., Bajpai, S. (2007) 40K/ 40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth Planet. Sci. Lett., v.263, pp.1-15.

Chenet, A.L., Fluteau, F., Courtillot, V., Gérard, M. and Subbarao, K.V. (2008) Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-mthick section in the Mahabaleshwar escarpment. Jour. Geophys. Res., Solid Earth (1978–2012), 113(B4).

Chenet, A.L., Courtillot, V., Fluteau, F., Gerard, M., Quidelleur, X., Khadri, S.F.R., Subbarao, K.V. and Thordarson T. (2009) Determination of rapid Deccan eruptions across the KTB using paleomagnetic secular variation: (II) Constraints from analysis of 8 new sections and synthesis for a 3500mthick composite section. Jour. Geophys. Res.: Solid Earth, Amer. Geophys. Union, v.114, pp.B06103.

Cox, K.G. and Hawkesworth, C.J. (1985) Geochemical stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic processes. Jour. Petrol., v.26, pp.355-377.

Dunlop, D.J. and Ozdemir O. (1997) Rock magnetism, Fundamentals and frontiers. Cambridge Studies in Magnetism.

Dekkers, M.J. (1997). Environmental magnetism: an introduction. Geologie en Mijnbouw, v.76, pp.163–182.

Dessai, A.G. and Bertrand, H. (1995) The ‘Panvel Flexure' along the western Indian continental margin: an extensional fault structure related to Deccan magmatism. Tectonophysics, v.241, pp.165–178.

Deshmukh, S.S. and Sehgal, M.N. (1988) Mafic dyke swarms in Deccan volcanic province of Madhya Pradesh and Maharashtra. In: K. V. Subbarao (Ed.), Deccan Flood Basalts. Mem. Geol. Soc. India, no.10., pp.323-340.

Devey, C.W. and Lightfoot, P.C. (1986) Volcanological and tectonic control of stratigraphy and structure in the western Deccan Traps. Bull. Volcanol., v.48, pp.195-207.

Duraiswami, R.A., Bondre, N.R. and Managave, S. (2008) Morphology of rubbly pahoehoe (simple) flows from the Deccan Volcanic Province: Implications for style of emplacement. Jour. Volcanol. Geotherm. Res., v.177, pp.822-836.

Duraiswami, R.A., Gadpallu, P., Shaikh T.N., and Cardin, N. (2014) Pahoehoe– Aa transitions in the lava flow fields of the western Deccan Traps, Indiaimplications for emplacement dynamics, flood basalt architecture and volcanic stratigraphy. Jour. Asian Earth Sci., v.84, pp.146–166.

Dragoni, M., Lanza, R. and Tallarico, A. (1997) Magnetic anisotropy produced by magma flow: theoretical model and experimental data from Ferrar dolerite sills (Antarctica). Geophys. Jour. Internat., v.128(1), pp.230-240.

Ellwood, B.B. (1978) Flow and emplacement direction determined for selected basaltic bodies using magnetic susceptibility anisotropy measurements. Earth Planet. Sci. Lett., v.41(3), pp.254-264.

Ernst, R.E. and Baragar, W.R.A. (1992). Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature, v.356, pp.511-513.

Geoffroy, L., Callot, J.P., Aubourg, C. and Moreira, M. (2002) Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova, v.14(3), pp.183-190.

Gil-Imaz, A., Pocoví½, A., Lago, M., Gale´, C., Arranz, E., Rillo, C. and Guerrero.E. (2006) Magma flow and thermal contraction fabric in tabular intrusions inferred from AMS analysis. A case study in a late-Variscan folded sill of the Albarrací½´n Massif (southeastern Iberian Chain, Spain). Jour. Struc. Geol., v.28, pp.641–653.

Godbole, S.M., Deshmukh, S.S. and Chatterjee, A.K. (1996) Geology and chemical stratigraphy of the basalt flows of Akot – Harisal section from Satpura ranges in the eastern part of the Deccan volcanic province. Gondwana Geol. Mag. Spec. Vol.2, pp.115-124.

Haggerty, S.E. (1978) Mineralogical contraints on Curie isotherms in deep crustal magnetic anomalies, Volume 5, Issue 2, pp.105–108.

Hargraves, R.B., Johnson, D. and Chan, C.Y. (1991) Distribution anisotropy: The cause of AMS in igneous rocks? Geophys. Res. Lett., v.18(12), pp.2193-2196.

Herrero-Bervera, E., Walker, G.P.L., Canon-Tapia, E. and Garcia, M.O. (2001). Magnetic fabric and inferred flow direction of dikes, conesheets and sill swarms, Isle of Skye, Scotland. Jour. Volcanol. Geotherm. Res., v.106(3), pp.195-210.

Heslop, D. (2009) On the statistical analysis of the rock magnetic S-ratio, Geophys. Jour. Internat., v.178, pp.159–161, doi:10.1111/j.1365-246X.2009.04175.x.

Hext, G.R. (1963) The estimation of second-order tensors, with related tests and designs. Biometrika, v.50 (3-4), pp.353-373. doi: 10.1093/biomet/ 50.3-4.353.

Housen, B., Richter, C. and van der Pluijm, B.A. (1993) Composite magnetic anisotropy fabrics: experiments, numerical models, and implications for the quantification of rocks fabrics. Tectonophysics, v.220, pp.1–12.

Hrouda, F. (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., v.5(1), pp.37-82.

Hrouda, F. (2007) Magnetic Susceptibility, anisotropy. In Encyclopedia of Geomagnetism and Paleomagnetism. Springer Netherlands, pp.546-560.

Ishikawa, Y. & Akimoto, S. (1957) Magnetic Properties of the FeTiO3-Fe2O3 Solid Solution Series, Jour. Phys. Soc. Jpn., v.12, pp.1083-1098.

Jay, A.E. and Widdowson, M. (2008) Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: implications for eruptive extent and volumes. Jour. Geol. Soc. London, v.165, pp.177-188.

Jelinek, V. (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica, v.22, pp.50-62.

Kailasam, L.N., Murty, B.G.K. and Chayanulu, A.V.S.R. (1972) Regional gravity studies of the Deccan Trap areas of Peninsular India. Curr. Sci., v.41, pp.403-407.

Keller, G., Adatte T., Gardin, S., Bartolini, A. & Bajpai, S. (2008). Main Deccan volcanism phase ends near the K–T boundary: evidence from the Krishna–Godavari Basin, SE India. Earth Planet. Sci. Lett., v.268, pp.293–311.

Keller, G., Adatte T., Bhowmick, P.K., Upadhyay, H., Dave, A., Reddy, A.N. and Jaiprakash, B.C. (2012) Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna–Godavari Basin, India. Earth Planet. Sci. Lett., v.341–344, pp.211–221.

Keszthelyi, L., Self, S. and Thordarson, T. (1999) Application of recent studies on the emplacement of basaltic lava flows to the Deccan Traps. In: Subbarao, K.V. (ed.) Deccan Volcanic Province. Mem. Geol. Soc. India, no.43, pp.485–520.

Khan, M.A. (1962) The anisotropy of magnetic susceptibility of some igneous and metamorphic rocks: Jour. Geophys. Res., v.67, pp.2873–2885.

Kissel, C., Barrier, E., Laj, C. and Teh-Quei Lee. (1986) Magnetic fabric in "undeformed” marine clays from compressional zones. Tectonics, v.5(5), pp.769–781.

Knight, M.D. and Walker, G.P. (1988) Magma flow directions in dikes of the Koolau Complex, Oahu, determined from magnetic fabric studies. Jour. Geophys. Res., v.93(B5), pp.4301-4319.

Knight, M.D., Walker, G.P., Ellwood, B.B. and Diehl, J.F. (1986) Stratigraphy, paleomagnetism, and magnetic fabric of the Toba tuffs: Constraints on the sources and eruptive styles. Jour. Geophys. Res.: Solid Earth (1978– 2012), v.91(B10), pp.10355-10382.

Lattard, D., R. Engelmann, A. Kontny, and U. Sauerzapf (2006) Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: Effects of composition, crystal chemistry, and thermomagnetic methods. Jour. Geophys. Res., v.111, Issue B12 doi:10.1029/2006JB004591.

Lewis, M. (1968) Some experiments on synthetic titanomagnetites. Geophys. Jour. Internat., v.16, pp.295-310.

Likhite, S.D. and Radhakrishnamurty. C. (1965) An apparatus for the determination of susceptibility of rocks in low fields at different frequencies, Bull. Nat. Geophys. Res. Inst., v.3, pp.1–8.

Liu, Q.S., Torrent, J., Maher, B.A., Yu, Y.J., Deng, C.L., Zhu, R.X. and Zhao, X.X. (2005) Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis, Jour. Geophys. Res., 110, B11102, doi:10.1029/2005JB003726.

Liu, Q.S., Roberts, A.P., Torrent, J., Horng, C.S. and Larrasoaña, J.C. (2007) What do the HIRM and S-ratio really measure in environmental magnetism? Geochem. Geophys. Geosyst., 8, Q09011, doi:10.1029/ 2007GC001717.

Liu, Q.S., Roberts, A.P., Larrasoaña, J.C., Banerjee, S.K., Guyodo, Y., Tauxe, L. and Frank Oldfield, F. (2012) Environmental Magnetism: Principles and Applications. Rev. Geophys., v.50, RG4002, doi:10.1029/ 2012RG000393.

Loock, S., Diot, H., Van Wyk de Vries, B., Launeau, P., Merle, O., Vadeboin, F. and Petronis, M.S. (2008) Lava flow internal structure found from AMS and textural data: An example in methodology from the Chaí®ne des Puys, France. Jour. Volcanol. Geotherm. Res., v.177(4), pp.1092-1104.

Louzada, K.L., Weiss, B.P., Maloof, A.C., Stewart, S.T., Swanson-Hysell, N.L. and Soule, S.A. (2008) Paleomagnetism of Lonar impact crater, India. Earth Planet. Sci. Lett., v.275(3), pp.308-319.

Lowrie, W., and Hirt, A. M., (1987).Anisotropy of magnetic susceptibility in the Scaglia Rossa pelagic limestone. Earth Planet. Sci. Lett., v.82(3–4), pp.349-356.

Mattei, M., Sagnotti, L., Faccenna, C. and Funiciello, R. (1997). Magnetic fabric of weakly deformed clayey sediments in the italian peninsula: relationships with compressional and extensional tectonics. Tectonophysics, v.271, pp.107–122.

Mattei, M., Speranza, F., Argentieri, A., Rossetti, F. and Funiciello, R. (1999) Extensional tectonics in the Amantea basin (Calabria, Italy): a comparison between structural and magnetic anisotropy data. Tectonophysics, v.307(1– 2), pp.33–49.

Mamtani, M.A. (2014) Magnetic fabric as a vorticity gauge in syntectonically deformed granitic rocks. Tectonophysics, v.629, pp 189–196.

Misra, S., Md. Arif1, Basavaiah, N., Srivastava, P.K. and Dube, A. (2010) Structural and anisotropy of magnetic susceptibility (AMS) evidence for oblique impact on terrestrial basalt flows: Lonar crater, India. GSA Bull.; March/April 2010; v.122; no.3/4, pp.563–574.

O'Reilly, W. and Banerjee, S.K. (1967) The mechanism of oxidation in titanomagnetites: a magnetic study. Mineral. Mag., v.36, pp.29-37.

Park, J.K., Tanczyk, E.I. and Desbarats, A. (1988) Magnetic fabric and its significance in the 1400 Ma Mealy diabase dykes of Labrador, Canada. Jour. Geophys. Res., v.93(B11), pp.13689-13.

Parés, J.M. and van der Pluijm, B.A. (2002). Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics, v.350(4), pp.283–298.

Paterson, S.R., Hao, Y. and Oertel, G. (1995) Primary and tectonic intensities in mudrocks. Tectonophysics, v.247, pp.105–119.

Petersen, N. (1976) Notes of the variation of magnetization within basalt lava flows and dikes. Pageoph. v.114, pp.177-193.

Plenier, G., Camps, P., Henry, B. and Ildefonse, B. (2005) Determination of flow directions by combining AMS and thin-section analyses: implications for Oligocene volcanism in the Kerguelen Archipelago (southern Indian Ocean). Geophys. Jour. Internat., v.160(1), pp.63-78.

Potter, D.K. and Stephenson, A. (1988) Single domain particles in rocks and magnetic fabric analysis. Geophys. Res. Lett., v.15(10), pp.1097-1100.

Radhakrishnamurty, C. (1970) Laboratory studies for ascertaining the suitability of rocks for palaeomagnetism. In: S.K. Runcorn (Ed.), Palaeogeophysics, Academic Press, London, pp.235–241.

Radhakrishnamurty C. (1985) Identification of titanomagnetites by simple magnetic techniques and application to basalt studies, Jour. Geol. Soc. India, v.26, p.640.

Radhakrishnamurthy, C. (1990) Mixed Domain States of Magnetic Grains in Basalts and Implications for Palaeomagnetism. Phys. Earth Planet. Inter., v.64, pp.348–354.

Rathi, G., Sangode, S.J. Rohtash Kumar and Ghosh, S.K. (2007) Magnetic fabrics in Primary Sedimentary Structures: An example from the Channel facies of Nagri Formation, Siwalik Group, NW Himalaya. Curr. Sci., v.92/ 7, pp.933-944.

Readman, P.W. and O'Reilly W. (1971) The synthesis and inversion of nonstoichiometric titanomagnetites. Physics Earth Planet. Inter., v.4(2), pp.121–128

Renne, P.R., Sprain, C.J., Richards, M.A., Self, S., Vanderkluysen, L. and Pande, K. (2015) State shift in Deccan volcanism at the CretaceousPaleogene boundary, possibly induced by impact. Science, v.350(6256), pp.76-78.

Rochette, P., Jenatton, L., Dupuy, C., Boudier, F. and Reuber, I. (1991) Diabase dikes emplacement in the Oman ophiolite: a magnetic fabric study with reference to geochemistry. In Ophiolite genesis and evolution of the oceanic lithosphere (pp.55-82).Springer Netherlands.

Rochette, P., Jackson, M. and Aubourg, C. (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev. Geophys, v.30(3), pp.209-226.

Sagnotti, L., Faccenna, C., Funiciello, R. and Mattei, M. (1994) Magnetic fabric and structural setting of Plio-Pleistocene clay units in an extensional regime: the Tyrrhenian margin of central Italy. Jour. Struct. Geol., v.16, pp.1243–1257.

Sangode, S.J., Kumar, R. and Ghosh, S.K. (1999) Palaeomagnetic and rock magnetic perspectives on the post-collision continental sediments of the Himalaya, India. In: T. Radhakrishna and J.D.A. Piper (Eds.), The Indian subcontinent and Gondwana: a palaeomagnetic and rock magnetic perspective. Mem. Geol. Soc. India, no.44, pp.221-248.

Sangode, S.J., Kumar, R. and Ghosh, S.K. (2001) Application of magnetic fabric studies in an ancient fluvial sequence of NW Himalaya. Curr. Sci., v.81(1), pp.66-71.

Schöbel, S. and De Wall, H. (2014) AMS – NRM interferences in the Deccan basalts: Towards an improved understanding of magnetic fabrics in flood basalts. Jour. Geophys. Res., v.119(4), pp.2651–2678.

Schoene, B., Samperton, K.M., Eddy, M.P., Keller, G., Adatte, T., Bowring, S.A., Khadri, S.F.R. and Gertsch, B. (2015) U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science, v.347(6218), pp.182-184.

Sheth, H.C. (1998) A reappraisal of the coastal Panvel í»exure, Deccan Traps, as a listric-fault-controlled reverse drag structure. Tectonophysics, v.294, pp.143-149.

Speyer, R.F. (1994) Thermal analysis of materials. Marcel Dekker, New York.

Stacey, F.D. (1960) Magnetic anisotropy of igneous rocks. Jour. Geophys. Res., v.5(8), pp.2429–2442.

Staudigel, H., Gee, J., Tauxe, L. and Varga, R.J. (1992). Shallow intrusive directions of sheeted dikes in the Troodos ophiolite: Anisotropy of magnetic susceptibility and structural data. Geology, v.20(9), pp.841-844.

Subbarao, K.V. and Hooper, P.R. (1988). Reconnaissance map of the Deccan Basalt Group in the Western Ghats, India. In: K.V. Subbarao (Ed.), Deccan Flood Basalts. Mem. Geol. Soc. India, no.10.

Subbarao, K.V., Prasad, C.V.R.K. and Radhakrishnamurty, C. (1989). Alteration of magnetic minerals and its effect on the NRM of Deccan trap flows of the Narmada region, India. Earth and planetary science letters, 93(2), 256-260.

Tarling, D. and Hrouda, F. (1993) Magnetic anisotropy of rocks. Springer.

Tauxe, L., Gee, J.S. and Staudigel, H. (1998). Flow directions in dikes from anisotropy of magnetic susceptibility data: The bootstrap way. Jour. Geophys. Res.: Solid Earth (1978–2012), v.103(B8), pp.17775-17790.

Thompson, R., Bloemendal, J., Dearing, J.A., Oldfield, F., Rummery, T.A., Stober, J.A. and Turner, G.M. (1980) Environmental applications of magnetic measurements, Science, v.207, pp.481-486, doi:10.1126/ science.207.4430.481.

Thompson, R. & Oldfield, F. (1986) Environmental Magnetism, Allen and Unwin, Winchester, Mass., doi:10.1007/978-94-011-8036-8.

Vandamme, D. and Courtillot, V. (1992). Paleomagnetic constraints on the structure of the Deccan traps. Phys. Earth Planet. Inter., v.74, pp.241-261.

Varga, R.J., Gee, J.S., Staudigel, H. and Tauxe, L. (1998) Dike surface lineations as magma flow indicators within the sheeted dike complex of the Troodos ophiolite, Cyprus. Jour. Geophys. Res.: Solid Earth (1978–2012), 103(B3), pp.5241-5256.

Verhoogen, J. (1962) Oxydation of iron-titanium oxides in igneous rocks. Jour. Geol., v.70, pp.168-181.

Walker, G. P. L. (1969) Some observations and interpretations on the Deccan Traps. In: K.V. Subbarao (Ed), 1999, Deccan Volcanic Province. Mem. Geol. Soc. India, no.43, pp.367–395.

Walker, G.P.L. (1971). Compound and simple lava flows and flood basalts. Bull. Volcanol., v.35, pp.579-590.

Most read articles by the same author(s)

1 2 > >>