Exploratory Study of Archaebacteria and their Habitat in Underground, Opencast Coal Mines and Coal Mine Fire Areas of Dhanbad

Authors

  • CSIR-Central Institute of Mining and Fuel Research, Industrial Biotechnology and Waste Utilization Division, Digwadih Campus, PO-FRI, Dhanbad - 828 108
  • CSIR-Central Institute of Mining and Fuel Research, Industrial Biotechnology and Waste Utilization Division, Digwadih Campus, PO-FRI, Dhanbad - 828 108
  • Indian Institute of Engineering Science and Technology, Shibpur, Department of Chemistry, PO- Botanical Garden, Howrah - 711 103
  • CSIR-Central Institute of Mining and Fuel Research, Industrial Biotechnology and Waste Utilization Division, Digwadih Campus, PO-FRI, Dhanbad - 828 108
  • CSIR-Central Institute of Mining and Fuel Research, Industrial Biotechnology and Waste Utilization Division, Digwadih Campus, PO-FRI, Dhanbad - 828 108

DOI:

https://doi.org/10.1007/s12594-018-0907-9

Abstract

Coal contains abundant microbial genera which include archaebacteria. The study of archaea kingdom in coal mines is a significant tool for knowing the relationship between coal and archaebacteria, the major role in geochemical cycle and application for further coal bio-beneficiation. The present study related to exploration of archaebacteria and their habitat in coal mining area of Dhanbad with reference to their ecology and nutrient availability that have evolve to grow under extreme conditions. Total six different sites such as two underground coal mines (Sudamdih shaft and Chasnalla underground mine), two opencast coal mines (Chandan project and Bhowra abandoned mine), Jharia mine fire and Sudamdih coal washery of Dhanbad was selected. Seven gram negative obligate anaerobic bacteria were isolated from the selected sites. The isolated species were rod and cocci shaped and the colony was round, smooth, off white in colour and with entire margin and little are cluster of cocci in shape. The isolated species were identified as Methanococcus spp, Methanobacterium spp and Methanosarcina spp. Apart from that two thermoacidophilic sulfur oxidizing bacteria Sulfolobus spp was also isolated from Jharia Coal Mine Fire. The physicochemical and biological characterization of the habitat was also studied for the entire selected area.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2018-05-01

How to Cite

Mukherjee, D., Selvi, V. A., Ganguly, J., Ram, L. C., & Masto, R. E. (2018). Exploratory Study of Archaebacteria and their Habitat in Underground, Opencast Coal Mines and Coal Mine Fire Areas of Dhanbad. Journal of Geological Society of India, 91(5), 575–582. https://doi.org/10.1007/s12594-018-0907-9

References

ASTM D 4638 – 11. Standard guide for preparation of biological samples for inorganic chemical analysis. Volume: 11.01.

Atlas, R.M. and Bartha, R. (2009) Microbial ecology, fundamental and applications, fourth edition, Pearson education.

Balows, A., Truper, H.G., Dworkin, M., Harder, W. and Schleifer, K.H. (1992) The prokaryotes (2nd edd.), A hand book on biology of bacteria: Ecophysiology, isolation, applications, Springer-Verlag.

Bhardwaj, K.K.R. and Gaur, A.C. (1970) The effect of HA and fulvic acid on the growth and efficiency of nitrogen fixation of Azotobacter chroococum. Folia, v.15(5), pp.364-367.

Brock, T. D., Brock, K. M., Belly, R. T. and Weiss, R. L. (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol., v.84, pp. 54-68.

Burcu, U., Verlin, R.P., Mili, S., Vicente, G.A., Kuk, J.C. and Klaus, N. (2012) Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water. Front. Microbiol., v.3, pp.175 1-14.

Casidajr, L.E., Klein, D.A. and Santoro, T. (1964) Soil dehydrogenase activity. Soil Sci., v.98, pp.371–376.

Central Mine Planning and Design Institute (CMPDI) Ltd (2006) Ranchi, Jharkhand, India.

Dariusz, S., Flynn, W. P., Courtney, T., Irene, S., Jennifer, L. M., Julius, S. L., Yu-Shih, L., Tobias, F. E., Florence, S., Kai, U. H., Maria M. And Arndt, S. (2008) Methane producing microbial community in a coal bed of the Illinois basin. Appl. Environ. Microbiol., pp. 2424–2432.

Delong, E.F. (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA, v.89, pp.5685–5689.

Delong, E.F. (2005) Microbial community genomics in the ocean. Nat. Rev. Microbiol., v.3, pp.459-469.

Dubey, R.C. and Maheswari, D.K. (2008) Practical Microbiology., 2nd edd. S. Chand publication.

Edwards, T. and Mcbride, B.C. (1975) New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol., v.29, pp.540-545.

Fuhrman, J.A., Mccallum, K. and Davis. A.A. (1992) Novel major archaebacterial group from marine plankton. Nature, v.356, pp.148–49.

Gaines, I., Salihoglu, and Yilmaz, A. (1983) Comparison of five humic acids. Fuel, v.62, pp.373–379.

Galand, P.E., Fritze, H., Conrad, R. and Yrjala. K. (2005) Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl. Environ. Microbiol., v.71, pp.2195-2198.

Garcia, J.L. (1990) Taxonomy and ecology of methanogens. FEMS Microbiol. Rev., v.87, pp.297-308.

Glass, J.B. and Orphan, V.J. (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front. Microbiol., v.3(61), pp.1–20.

Goodwin, J., Wase, D. and Forster. C. (1990) Effects of nutrient limitation on the anaerobic up flow sludge blanket reactor. Enzyme Microb. Technol., v.12, pp.877–884.

Green, M.S., Flanegan, K.C. and Gilcrease. P.C. (2008) Characterization of a methanogenic consortium enriched from a coal bed methane well in the Powder river basin, U.S.A. Int. Journal Coal Geol., v.76, pp.34–45.

Islam, K.R. and Weil, R.R. (2000) Land use effects on soil quality in a tropic forest ecosystem of Bangladesh. Agri. Ecosyst. Environ., v.79, pp.9–16.

Keough, B.P., Schmidt, T.M. and Hicks. R.E. (2003) Archaeal nucleic acids in picoplankton from great lakes on three continents. Microb. Ecol., v.46, pp.238-248.

Kim, B.S., Oh, H.M., Kang, H. and Chun. J. (2005) Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. Jour. Microbiol., v.43, pp.144-151.

Kleikemper, J., Pombo, S. A., Schroth, M.H., Sigler, W.V., Pesaro, M. and Zeyer. J. (2005) Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol., v.71, pp.149-158.

Klein, D., Flores, R.M., Venot, C., Gabbert, K., Schmidt, R., et al. (2008) Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: implications for CBM regeneration. Internat. Jour. Coal Geol., v.76, pp.3–13.

Knittel, K., Losekann, T., Boetius, A., Kort, R. and Amann. R. (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol., v.71, pp.467-479.

Krumholz, L.R., Mckinley, J.P. Ulrich, G.A. and Sufita. J. M. (1997) Confined subsurface microbial communities in Cretaceous rock. Nature, v.386, pp.64–66.

Lepp, P.W., Brinig, M.M., Ouverney, C.C., Palm, K., Armitage, G.C. and Relman. D.A. (2004) Methanogenic archaea and human periodontal disease. Proc. Natl. Acad. Sci. USA, v.101, pp.6176-6181.

Menyailo, O.V., Lehmann, J., Cravo, M., Silva, D. and Zech, W. (2003) Soil microbial activities in tree-based cropping systems and natural forests of the Central Amazon, Brazil. Biol. Fertility Soils, v.38, pp.1–9.

Mesa Verde Resources humic acid methodology, Procedure for determination of humic acid content, Placitas, NM-87043. www.humates.com/ methodology.htm/

Miles, A. A., Misra, S.S. and Irwin, J.O. (1938) The estimation of the bactericidal power of the blood. J Hygiene, v.38(6), pp.732-749.

Mills, H.J., Martinez, R.J., Story, S. and Sobecky. P.A. (2005) Characterization of microbial community structure in Gulf of Mexico fas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl. Environ. Microbiol., v.71, pp.3235-3247.

Mink, R.W. and Dugan, P.R. (1977) Tentative identification of methanogenic bacteria by fluorescence microscopy. Appl. Environ. Microbiol., v.33, pp.713-717.

Nelson, D.W. and Sommers, L.E. (1996) Total carbon, organic carbon, and organic matter. In: Sparks, D.L., et, al. (Eds.), Methods of Soil Analysis, Part 3, Chemical Methods. 3rd ed. SSSA, Madison, WI, SSSA Book Services.

Nisar, A. and Mir, S. (1989) Lignitic coal utilization in the form of HA as fertilizer and soil conditioner. Sci. Technol. Develop., v.8 (1), pp.23–26.

Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch, O.L. and Schleper. C. (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol., v.5, pp.787797.

Ohtonen, R. (1990) Biological activity and microorganisms in forest soil as indicators of environmental changes. Ph.D Dissertation. Acta University, Oula.

Penner, T. J., Foght, J. M. and Budwill. K. (2010) Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Internat. Jour. Coal Geol., v.82, pp.81–93.

Pierre, O., Anja, S. and Christa, S. 2013 Archaea in Biogeochemical Cycles. Annu. Rev. Microbiol., v.67, pp.437–457.

Prescott, L.M., Harley, J.P. and Klein, J.P. (2002) Microbiology (5th edd.), McGraw Hill publication, New York.

Prusty, B.K., Harpalani, S. and Singh, A.K. (2009) Quantification of ventilation air methane and its utilization potential at moonidih underground coal mine, india. United States Environmental Protection Agency (USEPA), Washington, D.C.

Sabrina, B., Tillmann, L., Martin, K., Frederick, V.N., Bert, E. and Heribert, C. (2011) Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines. Appl. Environ. Microbiol., pp.3749– 3756.

Shimizu, S., Akiyama, M., Naganuma, T., Fujioka, M., Nako, M. and Ishijima. Y. (2007) Molecular characterization of microbial communities in deep coal seam ground water of northern Japan. Geobiol., v.5, pp.423–433.

Sim, S.F., Lau, S., Wong, N.C., Janice, A., Muhammad, F., Md, N., Amira, S. and Mohd, P. (2006) Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner. J Braz. Chem. Soc., v.17 (3), pp.582-587.

Simon, H.M., Dodsworth, J.A. and Goodman. R.M. (2000) Crenarchaeota colonize terrestrial plant roots. Environ. Microbiol., v.2, pp.495-505.

Strapoc, D., Picardal, F.W., Turich, C., Schaperdoth, I., Macalady, J.L., Lipp, J.S., Lin, Y.S., Ertefai, T.F., Schubotz, F., Hinrichs, K.U., Mastalerz, M. and Schimmelmann. A. (2008) Methane producing microbial community in a coal bed of the Illinois Basin. Appl. Environ. Microbiol., v.74, pp.3918.

Strapoc D., Mastalerz, M., Dawson, K., Macalady, J.L., Callaghan, A., Wawrik, B., and Ashby, M. (2011) Biogeochemistry of Coal-Bed Methane. Ann. Rev. Earth Planetary Sci., v.39(1), pp.617-656.

Subbiah, B.V. and Asija, G.L. (1956) A rapid procedure for the determination of available nitrogen in soils. Curr. Sci., v.25, pp.259–260.

Takashima, M., Speece, R.E. and Parkin, G.F. (1990) Mineral requirements for methane fermentation. Crit. Rev. Environ. Control., v.19, pp.465– 479.

Tanner, R.S. (2002) Cultivation of bacteria and fungi, In: Hurst, C.J., R.L.Crawford , G.B. Knudsen, M.J. Mclnerney, and L.D. Syetzenbach. (Eds). Manual of Environmental Microbiology, Second edition, ASM (American Society of Microbiology) Press, Washington DC.

Ulrich, G. and Bower. S. (2008) Active methanogenesis and acetate utilization in Powder river basin coals, United States. Internat. Jour. Coal Geol., v.76, pp.25–33.

United State Department of Agriculture (USDA) (2014) Natural resources conservation service. Soil health-Guide for educator.

Woese, C.R., Kandler, O. and Wheelis. M.L. (1977) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA, v.87, pp. 4576–4579.

Yingei, W. and Resin, H.A. (1988) Treatment of Copper and Nickle. Haunjing Bashu., v.7, pp.21–22.

Zengler, K., Toledo, G., Rappe, M., Elkins, J., Mathur, E.J., et al. (2002) Cultivating the uncultured. Proc. Natl. Acad. Sci. USA, v.99, pp.15681– 15686.

Zhang, Y. and Gladyshev, V.D. (2009) Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem. Rev., v.4828, pp.4828–4861.

Zhang, Y. and Gladyshev, V.D. (2010) General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni, and Se. Jour. Biol. Chem., v.285, pp.3393–3405.