Petrographic and Geochemical Study of Gurha Lignites, Bikaner Basin, Rajasthan, India: Implications for Thermal Maturity, Hydrocarbon Generation Potential and Paleodepositional Environment

Authors

  • Petroleum Engineering and Geological Sciences Division, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi - 229 304
  • Petroleum Engineering and Geological Sciences Division, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi - 229 304

DOI:

https://doi.org/10.1007//s12594-018-0949-z

Abstract

In the present study an attempt has been made to characterize the Gurha lignites employing petrographic and geochemical techniques on a large number of lignite samples. The data generated has been discussed to understand the hydrocarbon generation potential as well as the evolution of the paleomires of these lignites. The present investigation indicates that these lignites are mainly dominated by the huminite followed by inertinite and liptinites occurs in meager concentration. The huminite reflectance values rank the Gurha lignite as a low-rank B lignite.

Petrographic result indicates these lignites are thermally immature in nature and comprised of Type-III kerogen and may generate only gas on maturation which is further supported by the rock-eval pyrolysis. The plots of rock eval data also indicates the same. The GI and TPI as well as GWI and VI values and the petrography-based facies critical models indicate that these lignites originated mostly under wet forest swamp condition. The microscopic constituents have also shown that these lignites are from herbaceous plants in wet forest swamp environment and ombrotrophic hydrological condition. The presences of framboidal pyrite in the study area infer the marine influence which also supported by the presence of high sulphur content.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2018-07-09

How to Cite

Singh, A. K., & Kumar, A. (2018). Petrographic and Geochemical Study of Gurha Lignites, Bikaner Basin, Rajasthan, India: Implications for Thermal Maturity, Hydrocarbon Generation Potential and Paleodepositional Environment. Journal of Geological Society of India, 92(1), 27–35. https://doi.org/10.1007//s12594-018-0949-z

References

ASTM D3176 (1989) Standard Practice for Ultimate Analysis of Coal and Coke, Annual Book of ASTM Standards. v. 05.05.

ASTM D5373 (1993) Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal, pp. 1-11.

ASTM D5373-04 (2004) Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal and coke. In: Annual Book of ASTM Standards, Part 26. Gaseous Fuels: Coal and Coke ASTM, Philadelphia, PA, pp. 504–507.

ASTM-D5373-08 (2008) Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal.

ASTM D5373-15 (2013) Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM International, West Conshohocken, PA.

Alaug, A.S. (2011) Source rocks evaluation, hydrocarbon generation and palynofacies study of Late Cretaceous succession at 16/G-1 offshore well in Qamar Basin, eastern Yemen. Arab. Jour. Geosci., v. 4, pp. 551–566.

Bhattacharya, S. and Dutta, S. (2015) Neoproterozoic-Early Cambrian biota and ancient niche: A synthesisfrom molecular markers and palynomorphs from Bikaner-NagaurBasin, western India. Precambrian Res., v. 266, pp. 361–374.

Bechtel, A., Sachsenhofer, R. F., Markic, M., Gratzer, R., Lücke, A. and Püttmann, W. (2003) Paleoenvironmental implications from biomarker and stable isotope investigations on the Pliocene Velenje lignite seam (Slovenia). Org. Geochem., v. 34, pp. 1277–1298.

Bechtel, A., Karayií°it, A. I., Sachsenhofer, R. F., Inaner, H., Christanis, K. and Gratzer, R. (2014) Spatial and temporal variability in vegetation and coal facies as reflected by organic petrological and geochemical data in the Middle Miocene í‡ayirhan coal field (Turkey). Internat. Jour. Coal Geol., v. 134–135, pp. 46–60.

Bhandari, A. (1999) Phanerozoic stratigraphy of western Rajasthan India: a review. In: P. Kataria (Ed.), Geology of Rajasthan: Status and Perspective. MLS University, Udaipur, pp. 126–174.

BIS, (2003) Methods of test for coal and coke (2nd revision of IS: 1350). Part I, Proximate analysis. Bureau of Indian Standard, pp. 1–29.

Bordenave, M.L., Espitalié, J., Leplat, P., Oudin, J. L. and Vandenbroucke, M. (1993) Screening techniques for source rock evaluation. In: M.L. Bordenave, (Ed.), Applied Petroleum Geochemistry. Editions Technip, Paris, pp. 217–278.

Bustin, R. M. and Lowe, L. E. (1987) Sulphur, low temperature ash and minor elements in humid–temperate peat of the Fraser River Delta, British Columbia. Jour. Geol. Soc. London, v. 144, pp. 435–450.

Calder, J. H., Gibling, M. R. and Mukhopadhyay, P. K. (1991) Peat formation in a Westphalian B piedmont setting, Cumberland basin, Nova Scotia: implications for the maceral based interpretation of rheotrophic and raised paleomires. Bull. Soc. Géol. France, v. 162(2), pp. 283–298.

Casagrande, D. J. (1987) Sulphur in peat and coal. Geol. Soc. London, Spec. Publ., v. 32, pp. 87–105.

Diessel, C. F. K. (1986) On the correlation between coal facies and depositional environments. 20th Newcastle Symposium on "Advances in the Study of the Sydney Basin" Publ., 246, Proc., 1986. Department of Geology, University of Newcastle, Australia, pp. 19–22.

Diessel, C. F. K. (1992) Coal-bearing Depositional Systems. Springer-Verlag, New York, Berlin, pp. 721.

Erik, N.Y. (2011) Hydrocarbon generation potential and MioceneePliocene paleoenvironments of the Kangal Basin (Central Anatolia, Turkey). Jour. Asian Earth Sci., v. 42, pp. 1146–1162.

Flores, D. (2002) Organic facies and depositional palaeoenvironment of lignites from Rio Maior Basin (Portugal). Inter. Jour. Coal Geol., v. 48, pp. 181–195.

Hackley, P. C., Warwick, P. D. and Breland Jr., F. C. (2007) Organic petrology and coalbed gas content, Wilcox Group (PaleoceneeEocene), northern Louisiana. Internat. Jour. Coal Geol., v. 71, pp. 54–71.

Hakimi, M. H., Abdullah W.H., Sia, S. and Makeen, Y. M. (2013) Organic geochemical and petrographic characteristics of Tertiary coals in the northwest Sarawak, Malaysia: Implications for palaeoenvironmental conditions and hydrocarbon generation potential Mar. Pet. Geol., v. 48, pp. 31–46.

Hower, J. C., O'Keefe, J. M. K., Volk, T. J. and Watt, M. A. (2010) Funginite eresinite associations in coal. Internat. Jour. Coal Geol., v.83, pp. 64–72.

Hower, J. C., O'Keefe, J. M. K., Eble, C. F., Raymond, A., Valentim, B., Volk, T. J.,Richardson, A. R., Satterwhite, A. B., Hatch, R. S., Stucker, J. D. and Watt, M. A. (2011) Notes on the origin of inertinite macerals in coal: evidence for fungal and arthropod transformations of degraded macerals. Internat. Jour. Coal Geol., v.8 6, pp. 231–240.

Hunt, J. M. (1996) Petroleum Geochemistry and Geology, second ed. W.H. Freeman, San Francisco.

ICCP (1971) International Handbook of Coal Petrography, 2nd ed. Centre National de la Recherche Scientifique, Paris (1st suppl.).

ICCP (1993) International Handbook of Coal Petrography. 3rd suppl to the 2nd edn. Centre National de la Recherche Scientifique, Paris.

ICCP (1998) The new vitrinite classification (International Committee for Coal and Organic Petrology, System 1994). Fuel, v. 77, pp. 349–358.

ICCP (2001) The new inertinite classification (International Committee for Coal and Organic Petrology, System 1994). Fuel, v. 80, pp. 459–471.

ICCP (2005) Classification of huminite (International Committee for Coal and Organic Petrology, System 1994). Inter. Jour. Coal Geol., v. 62, pp. 85–106.

ICCP (2017) Classification of liptinite (International Committee for Coal and Organic Petrology, System 1994). Inter. Jour. Coal Geol., v.169, pp.40– 61.

ISO 11760 (2005) Classification of coals. International Standard, pp. 1–9.

Jasper, K., Hartkopf-Fröder, C., Flajs, G. and Littke, R. (2010) Evolution of Pennsylvanian (Late Carboniferous) peat swamps of the Ruhr Basin, Germany: comparison of palynological, coal petrographical and organic geochemical data. Internat. Jour. Coal Geol., v. 83, pp. 346–365.

Kalkreuth, W., Kotis, T., Papanicolaou, C. and Kokkinakis, P. (1991) The geology and coal petrology of a Miocene lignite profile at Meliadi Mine Katerini, Greece. Internat. Jour. Coal Geol., v. 17, pp. 51–67.

Koukouzas, N., Kalaitzidis, S. P. and Ward, C. R. (2010) Organic petrographical, mineralogical and geochemical features of the Achlada and Mavropigi lignite deposits, NW Macedonia, Greece. Inter. Jour. Coal Geol., v. 83, pp. 387–395.

Kumar, M., Spicer, R. A., Spicer, T. E. V., Shukla, A., Mehrotra, R. C. and Monga, P. (2016) Palynostratigraphy and palynofacies of the early Eocene Gurha lignite mine, Rajasthan, India. Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 461, pp. 98–108.

Kumar, K., Rana, R. S. and Paliwal, B. S. (2005) Osteoglossid and Lepisosteid fish remains from the Paleocene Palana Formation, Rajasthan, India. Palaeontology, v. 48, pp. 1187–1209.

Mukhopadhyay, P. K., Wade, J. A. and Kruge, M. A. (1995a) Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil–source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Org. Geochem., v. 22, pp. 85–104.

Mukhopadhyay, P. K., Wade, J. A. and Kruge, M. A. (1995b) Organic facies and maturation of Cretaceous/Jurassic rocks and possible oil–source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Org. Geochem., v. 22, pp. 85–104.

Mitrovic, D., íokovic, N., •ivotic, D., Bechtel, A., Å ajnovic, A. and Stojanovic, K. (2016) Petrographical and organic geochemical study of the Kovin lignite deposit, Serbia. Inter. Jour. Coal Geol., v. 168, pp. 80–107.

O'Keefe, J. M. K. and Hower, J. C. (2011) Revisiting Coos Bay, Oregon: a reexamination of funginiteehuminite relationships in Eocene subbituminous coals. Internat. Jour. Coal Geol., v. 85, pp. 34–42.

Perry, G. J., Allardice, D. J. and Kiss, L. T. (1982) Variation in Victorian brown coal characteristics and hydrogenation potential. Fuel, v. 61, pp. 1058– 1064.

Petersen, H. I. and Ratanasthien, B. (2011) Coal facies in a Cenozoic paralic lignite bed, Krabi Basin, southern Thailand: changing peat-forming conditions related to relative sea-level controlled watertable variations. Inter. Jour. Coal Geol., v. 87, pp. 2–12.

Petersen, H. I., Lindström, S., Nytoft, H. P. and Rosenberg, P. (2009) Composition, peatforming vegetation and kerogen paraffinicity of Cenozoic coals: relationship to variations in the petroleum generation potential (Hydrogen Index). Inter. Jour. Coal Geol., v. 78, pp. 119–134.

Peters, K. E. and Cassa, M. R. (1994) Applied source rock geochemistry. In: Magoon, L.B., Dow, W.G. (Eds.), The Petroleum System From Source to Trap, AAPG, Mem., v. 60, pp. 93–120.

Peters, K. E. (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull. v. 70(3), pp. 318–329.

Prasad, B., Asher, R. and Borgohai, B. (2010) Late Neoproterozoic (Ediacaran)Early Paleo-zoic (Cambrian) acritarchs from the Marwar Supergroup, Bikaner-Nagaur Basin, Rajasthan. Jour. Geol. Soc. India, v. 75, pp. 415– 431.

Raju, S. V. and Mathur, N. (2013) Rajasthan lignite as a source of unconventional oil. Curr. Sci., v. 104(6), pp. 752–757.

Redlich, P., Jackson, W. R. and Larkins, F. P. (1985) Hydrogenation of brown coal 9.Physical characterisatlon and liquefaction potential of Australian coals. Fuel, v. 64, pp. 1383–1390.

Ruau, O., Pradier, B., Landais, P. and Gardette, J. L. (1997) Influence of the conditions of deposition on the chemistry and the reflectance variations of the Brent coals. Org. Geochem., v. 25, pp. 325–339.

Shivanna, M. and Singh, H. (2016) Depositional environment and hydrocarbon potential of marginal marine sediments of Eocene from western India: A palynofacies perspective. Mar. Pet. Geol., v. 73, pp. 311–321.

Shukla, A., Mehrotra, R. C., Spicer, R. A., Spicer, T. E. V. and Kumar M. (2014) Cool equatorial terrestrial temperatures and the South Asianmonsoon in the Early Eocene: Evidence from the Gurha Mine, Rajasthan, India. Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 412, pp. 187–198.

Sia, G. S. and Abdullah, W. H. (2012) Geochemical and petrographical characteristics of low-rank Balingian coal from Sarawak, Malaysia: its implications on depositional conditions and thermal maturity. Inter. Jour. Coal Geol., v. 96-97, pp. 22–38.

Siavalas, G., Linou, M., Chatziapostolou, A., Kalaitzidis, S., Papaefthymiou, H. and Christanis, K. (2009) Palaeoenvironment of Seam I in the Marathousa Lignite Mine, Megalopolis Basin (Southern Greece). Inter. Jour. Coal Geol.,. v. 78, pp. 233–248.

Singh, P. K., Rajak, P. K., Singh, M. P., Naik, A. S., Singh, V. K., Raju, S.V. and Ojha, S. (2015) Environmental Geochemistry of Selected Elements in Lignite from Barsingsar and Gurha Mines of Rajasthan, Western India. Jour. Geol. Soc. India, v.86, pp. 23–32.

Stock, A. T., Littke, R., Lücke, A., Zieger, L. and Thielemann, T. (2016) Miocene depositional environment and climate in western Europe: The lignite deposits of the Lower Rhine Basin, Germany. Internat. Jour. Coal Geol., v. 157, pp. 2–18.

Tissot, B. P., and D. H. Welte. (1984) Petroleum formation and occurrence, second ed.,Springer, Berlin, pp. 699.

Tissot, B. P., Pelet, R. and Ungerer, P. (1987) Thermal history of sedimentary basins, maturations indices, and kinetics of oil and gas generation. AAPG Bull., v. 71(12), pp. 1445–1466.

Ward, C. R. (2002) Analysis and significance of mineral matter in coal seams. Internat. Jour. Coal Geol., v. 50, pp. 135–68.

Zheng, G., Duan, Y., Takano, B., Luo, B., Cheng, K. and Zhang, Y. (2003) Pyrolysis studies on the conversion of vitrinite reflectance and the primary productivity of various non-marine source rocks in China. Jour. Asian Earth Sci., v. 22, pp. 353–361.

Zivotic, D., Stojanovic, K., Grzetic, I., Jovancicevic, B., Cvetkovic, O., Sajnovic, A., Simic, V., Stojakovic, R. and Scheeder, G. (2013) Petrological and geochemical composition of lignite from the D field, Kolubara basin (Serbia). Inter. Jour. Coal Geol., v. 111, pp. 5-22.

Most read articles by the same author(s)

1 2 > >>