Coupled Assimilation and Fractional Crystallization (AFC) and Mantle Plume Source(s) Contribution in the Generation of Paleoproterozoic Mafic Dykes of the Eastern Dharwar Craton, Southern India

Authors

  • Mantle Petrology Laboratory, Department of Geology, Banaras Hindu University, Varanasi – 221 005
  • Mantle Petrology Laboratory, Department of Geology, Banaras Hindu University, Varanasi – 221 005

DOI:

https://doi.org/10.1007/s12594-019-1144-6

Keywords:

No Keywords

Abstract

The eastern Dharwar craton (EDC) of the southern Indian Shield hosts five geochronologically distinct Paleoproterozoic mafic dyke swarms emplaced at 2.37, 2.21, 2.18, 2.08 and 1.89 Ga. Trace element geochemical data available for these dykes display the ‘arc signals' viz., negative Nb-Ta anomalies and elevated Zr/Nb, Th/Yb and Th/Ta values, which are conventionally interpreted to represent involvement of subduction in their genesis. It is shown that these ‘arc signals' resulted from coupled assimilation and fractional crystallization (AFC) processes that modified these mantle-derived melts. Since, mafic dykes under study are highly evolved, an attempt has been made to estimate (using PRIMELTS2.xls software) the composition of the primary magma from the most primitive sample available from the 2.21 and 2.37 Ga swarms. The mantle potential temperature derived from the estimated primary magma compositions revealed anomalously hot mantle source regions compared to the known ambient upper mantle temperatures during Paleoproterozoic, thus implying the possible involvement of thermal plumes in their genesis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-02-05

How to Cite

Pandey, A., & Rao, N. C. (2019). Coupled Assimilation and Fractional Crystallization (AFC) and Mantle Plume Source(s) Contribution in the Generation of Paleoproterozoic Mafic Dykes of the Eastern Dharwar Craton, Southern India. Journal of Geological Society of India, 93(2), 157–162. https://doi.org/10.1007/s12594-019-1144-6

References

Abbott, D., Burgess, L. and Longhi, J. (1994) An empirical thermal history of the earth's upper mantle. Jour. Geophys. Res., v.99, pp.13835-13850.

Bédard, J.H. (2001) Parental magmas of the Nain Plutonic Suite anorthosites and mafic cumulates: a trace element modelling approach. Contrib. Mineral. Petrol., v.141, pp.747-771.

Biggar, G.M. (1983) Crystallization of plagioclase, augite, and olivine in synthetic systems and in tholeiites. Min. Mag., v.47, pp.161-176.

Cadman, A.C., Tarney, J. and Baragar, W.R.A. (1995) Nature of mantle source contributions and the role of contamination and in situ crystallization in the petrogenesis of Proterozoic mafic dykes and flood basalts Labrador. Contrib. Mineral. Petrol., v.122, pp.213-229.

Chadwick, B., Vasudev, V.N. and Hegde, G.V. (2000) The Dharwar craton, southern India, interpreted as the result of Late Archean oblique convergence. Precambrian Res., v.99, pp.91-111.

Chalapathi Rao, N.V., Dongre, A., Wu, F.Y. and Lehmann, B. (2016) A Late Cretaceous (ca. 90 Ma) kimberlite event in southern India: Implication of sub-continental lithospheric mantle evolution and diamond exploration. Gondwana Res., v.35, pp.378-389.

Chalapathi Rao, N.V., Wu, F.Y., Mitchell, R.H., Li, Q.L. and Lehmann, B. (2013) Mesoproterozoic U-Pb ages, trace element and Sr-Nd isotopic composition of perovskite from kimberlites of the eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1 Ga tectonothermal event. Chem. Geol., v.353, pp.48-64.

Ciborowski, T.J.R., Kerr, A.C., Ernst, R.E., McDonald, I., Minifie, M.J., Harlan, S.S. and Millar, I.L. (2015) The Early Proterozoic Matachewan Large Igneous Province: Geochemistry, petrogenesis, and implications for earth evolution. Jour. Petrol., v.56, pp.1459-1494.

Ciborowski, T.J.R., Kerr, A.C., McDonald, I., Ernst, R.E., Hughes, H.S.R. and Minifie, M.J. (2014) The geochemistry and petrogenesis of the Paleoproterozoic du Chef dyke swarm, Québec, Canada. Precambrian Res., v.250, pp.151-166.

Ciborowski, T.J.R., Minifie, M.J., Kerr, A.C., Ernst, R.E., Baragar, B. and Millar, I.L. (2017) A mantle plume origin for the Paleoproterozoic CricumSpecific Large Igneous Province. Precambrian Res., v.294, pp.189-213.

Condie, K.C. (1997) Sources of Proterozoic mafic dyke swarms: constraints from Th/Ta and La/Yb ratios. Precambrian Res., v.81, pp.3-14.

Condie, K.C. (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, v.79, pp.491-504.

Cribb, J.W. and Barton, M. (1996) Geochemical effects of decoupled fractional crystallization and crustal assimilation. Lithos, v.37, pp.293-307.

Davies, G.F. (2009) Effect of plate bending on the Urey ratio and the thermal evolution of mantle. Earth Planet Sci. Lett., v.287, pp.513-518.

Ellam, R.M. and Cox, K.G. (1991) An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth Planet Sci Lett., v.105, pp.330-342.

Ernst, R.E. and Buchan, K.L. (2001) The use of mafic dike swarms in identifying and locating mantle plumes. Geol. Soc. Am. Spec. Paper, v.352, pp.247-265.

Ernst, R.E., Srivastava, R.K., Bleeker, W. and Hamilton, M.A. (2010) Precambrian large igneous provinces (LIPs) and their dyke swarms: New insights from high-precision geochronology integrated with paleomagnetism and geochemistry. Precambrian Res., v.183, pp.vii-xi. doi: 10.1016/j.precamres.2010.09.001.

French, J.E. and Heaman, L.M. (2010) Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: Implications for the existence of the Neoarchean supercraton Scalvia. Precambrian Res., v.183, pp.416-441.

French, J.E., Heaman, L.M., Chacko, T. and Srivastava, R.K. (2008) 18911883 Ma southern Bastar-Cuddapah mafic igneous events, India: A newly recognized large igneous province. Precambrian Res., v.160, pp.308-322.

Green, D.H. and Falloon, T.J. (2005) Primary magmas at mid-ocean ridges, "hotspots”, and other intraplate settings: Constraints on mantle potential temperature. Geol. Soc. Am. Spec. Paper, v.388, pp.217-247.

Halama, R., Marks, M., Brügmann, G., Siebel, W., Wenzel, T. and Markl, G. (2004) Crustal contamination of mafic magmas: evidence from a petrological, geochemical and Sr-Nd-Os-O isotopic study of the Proterozoic Isortoq dike swarm, South Greenland. Lithos, v.74, pp.199-232.

Halls, H.C., Kumar, A., Srinivasan, R. and Hamilton, M.A. (2007) Paleomagnetism and U-Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precambrian Res., v.155, pp.47-68.

Hari, K.R., Swarnkar, V. and Manu Prasanth, M.P. (2018) Significance of assimilation and fractional crystallization (AFC) process in the generation of basaltic lava flows from Chhotaudepur area, Deccan Large Igneous Province, NW India. Jour. Earth Syst. Sci., v.127, p.85.

Hart, W.K. (1985) Chemical and isotopic evidence for mixing between depleted and enriched mantle, northwestern USA. Geochim. Cosmochim. Acta, v.49, pp.131-144.

Herzberg, C. and Asimow, P.D. (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem. Geophys. Geosys., v.9, Q09001.

Hoek, J.D. and Seitz, H.-M. (1995) Continental mafic dyke swarms as tectonic indicators: an example from the Vestfold Hills, East Antarctica. Precambrian Res., v.75, pp.121-139.

Khanna, T.C., Sesha Sai, V.V., Zhao, G.C., Subba Rao, D.V., Keshav Krishna, A., Sawant, S.S. and Nirmal Charan, S. (2013) Petrogenesis of mafic alkaline dikes from the ~2.18 Ga Mahbubnagar Large Igneous Province, Eastern Dharwar Craton, India: Geochemical evidence for uncontaminated intracontinental mantle derived magmatism. Lithos, v.179, pp.84-98.

Korenaga, J. (2008) Urey ratio and the structure and evolution of earth's mantle. Rev. Geophys., v.46, RG2007.

Kumar, A., Hamilton, M.A. and Halls, H.C. (2012a) A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India. Geochem. Geophys. Geosys., v.13, Q02011.

Kumar, A., Nagaraju, E., Besse, J. and Bhaskar Rao, Y.J. (2012b) New age, geochemical and paleomagnetic data on 2.21 Ga dyke swarm from south India: Constraints on Paleoproterozoic reconstruction. Precambrian Res., v.220-221, pp.123-138.

Kumar, A., Parashuramulu, V. and Nagaraju, E. (2015) A 2082 Ma radiating dyke swarm in the Eastern Dharwar Craton, southern India and its implications to Cuddapah basin formation. Precambrian Res., v.266, pp.490-505.

Lassen, B., Bridgwater, D., Bernstein, S. and Rosing, M. (2004) Assimilation and high-pressure fractional crystallization (AFC) recorded by Paleoproterozoic mafic dykes, Southeast Greenland. Lithos, v.72, pp.1-18.

Marsh, J.S. (1989) Geochemical constraints on coupled assimilation and fractional crystallization involving upper crustal compositions and continental tholeiitic magma. Earth Planet. Sci. Lett., v.92, pp.70-80.

McKenzie, D. and Bickel, M.J. (1988) The volume and composition of melt generated by extension of the lithosphere. Jour. Petrol., v.29, pp.625-679.

Mondal, M.E.A. and Ahmad, T. (2001) Bundelkhand mafic dykes, Central Indian Shield: Implications for the role of sediment subduction in Proterozoic crustal evolution. The Island Arc, v.10, pp.51-67.

Mungall, J.E. (2007) Crustal contamination of picritic magmas during transport through dikes: the Expo Intrusive suite, Cape Smith fold belt, New Québec. Jour. Petrol., v.48, pp.1021-1039.

Nagaraju, E., Parashuramulu, V., Kumar, A. and Srinivas Sarma, D. (2018) Paleomagnetism and geochronological studies on a 450 km long 2216 Ma dyke from the Dharwar craton, southern India. Phys. Earth Planet. Inter., v.274, pp.222-231.

Nisbet, E.G., Cheadle, M.J., Arndt, N.T. and Bickle, M.J. (1993) Constraining the potential temperature of the Archean mantle: A review of the evidence from komatiites. Lithos, v.30, pp.291-307.

Pandey, B.K., Gupta, J.N., Sarma, K.J. and Sastry, C.A. (1997) Sm-Nd, PbPb and Rb-Sr geochronology and petrogenesis of the mafic dyke swarm of Mahbubnagar, South India: implications for Paleoproterozoic crustal evolution of the Eastern Dharwar Craton. Precambrian Res., v.84, pp.181-196.

Ramakrishnan, M. and Vaidyanadhan, R. (2008) Geology of India. Geological Society of India, Bangalore, v.1, pp.556.

Richter, F.M. (1988) A major change in the thermal state of the earth at the Archean-Proterozoic boundary: consequences for the nature and preservation of continental lithosphere. Jour. Petrol., pp. 39-52.

Rudnick, R.L. and Fountain, D.M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys., v.33, pp.267309.

Rudnick, R.L. and Gao, S. (2003) Composition of the continental crust. In: Davis, A.M., Holland, H.D., and Turkeian, K.K. (eds.) Treatise on Geochemistry, v.1.

Sparks, R.S.J. (1986) The role of crustal contamination in magma evolution through geological time. Earth Planet Sci. Lett., v.78, pp.211-223.

Srivastava, R.K., Jayananda, M., Gautam, G.C. and Samal, A.K. (2014a) Geochemical studies and petrogenesis of ~2.21-2.22 Ga Kunigal mafic dyke swarm (trending N-S to NNW-SSE) from eastern Dharwar craton, India: implications for Paleoproterozoic large igneous provinces and supercraton Superia. Miner. Petrol., v.108, pp.695-711.

Srivastava, R.K., Jayananda, M., Gautam, G.C., Gireesh, V. and Samal, A.K. (2014b) Geochemistry of an ENE-WSW to NE-SW trending ~2.37 Ga mafic dyke swarm of the eastern Dharwar craton, India: Does it represent a single magmatic event?. Chemie der Erde, v.74, pp.251-265.

Srivastava, R.K., Samal, A.K. and Gautam, G.C. (2014c) Geochemical characteristics and petrogenesis of four Paleoproterozoic mafic dike swarms and associated large igneous provinces from the eastern Dharwar craton, India. Int. Geol. Rev., doi:10.1080/00206814.2014.938366.

Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., and Norry, M.J., (eds.) Magmatism in Ocean Basins. Geological Soc. London Spec. Publ., v.42, pp. 313-345.

Wasserburg, G.T., MacDonald, G.J.F., Hoyle, F., and Fowler, W.A. (1964) Relative contributions of uranium, thorium, and potassium to heat production in the earth. Science, v.143, pp.465-467.

White, R. and McKenzie, D. (1989) Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Jour. Geophys. Res., v.94, pp.7685-7729.

Zhang, C-L., Li, Z-X., Li, X-H. and Ye, H-M. (2009) Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications. Jour. Asian Earth Sci., v.35, pp.167-179.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.