In-situ Determination of Trace Element and REE Partitioning in a Natural Apatite-Carbonatite Melt System using Synchrotron XRF Microprobe Analysis

Authors

  • Mineralogisch-Petrographisches Institut Universität Hamburg

DOI:

https://doi.org/10.1007/s12594-019-1178-9

Keywords:

No Keywords

Abstract

Inclusions of calcite within large euhedral apatite crystals from the pyroxenite-carbonatite-syenite complex of Sevattur, Tamil Nadu, south India, were identified to represent inclusions of a primary carbonatitic melt (calcite I) from which the apatites have crystallized. The apatites themselves are embedded into a younger batch of calcite-carbonatitic melt (calcite II).

Using the synchrotron XRF microprobe at beamline L at HASYLAB/DESY (Hamburg), the concentrations of the trace elements Ba, Sr, Y, Zr, Th, La, Ce, Nd, Sm, Gd, Dy, and Er were determined both in melt inclusions as well as in host apatites and younger carbonatite matrix. Unexpected high REE concentrations were found not only in apatite but also in calcite, especially of the younger matrix phase, in agreement with the whole rock geochemistry. The data reveal an equilibrium distribution between melt inclusions and host apatite that allows the calculation of partition coefficients D = CiAp/CiCc=melt for elements of interest.

Assuming 9% crystallization of the melt, which can be calculated from the whole rock analyses, the composition of the primary carbonatite melt prior to apatite crystallization can be determined. This composition is, with the exception of only few elements, nearly equal to that of the younger matrix carbonatite melt (calcite II), and thus gives evidence for the existence of different pulses of carbonatite melt during crystallization and consolidation of the carbonatite body.

The results allow new insights into the processes of trace element and REE distribution between the two major igneous components of carbonatites and thus into the question of carbonatitic fractionation processes. The data reveal that mere apatite crystallization and fractionation does not lead to enriched REE compositions during carbonatite evolution but lowers their concentrations in the residual melts. But alternatively, if segregated apatite is collected and incorporated by a new melt batch, the overall REE of this melt will be increased.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2019-03-01

How to Cite

Schleicher, H. (2019). In-situ Determination of Trace Element and REE Partitioning in a Natural Apatite-Carbonatite Melt System using Synchrotron XRF Microprobe Analysis. Journal of Geological Society of India, 93(3), 305–312. https://doi.org/10.1007/s12594-019-1178-9

References

Andersen, T. (1988) Evolution of peralkaline calcite carbonatite magma in the Fen complex, southeast Norway. Lithos, v.22, ppp.99-112.

Basto, M.J. (1995) Gold assessment in micas by XRF using synchrotron radiation. Chem. Geol., v.124, pp.83-90.

Bessette, D.R. (1999) Analyse und Quantifizierung geologischer Proben mit der Synchrotron-Röntgenfluoreszenz. Ph.D. thesis, Hamburg University.

Biswal, T.K., Waele, B.D. and Ahuja, H. (2007) Timing and dynamics of the juxtaposition of the Eastern Ghats Mobile Belt against the Bhandara craton, India: A structural and zircon U-Pb SHRIMP study of the fold-thrust belt and associated nepheline syenite plutons. Tectonics, v.26, pp.1-21.

Bizzarro, M., Simonetti, A., Stevenson, R.K. and Kurszlaukis, S., (2003) In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laser ablation MC-ICP-MS. Geochim. Cosmochim. Acta, v.67, pp.289-302.

Borodin, L.S., Gopal, V., Moralev, V.M. and Subramanian, V., (1971) Precambrian carbonatites of Tamil Nadu, South India. Jour. Geol. Soc. India, v.12, pp.101-112.

Brigatti, M.F., Malferrari, D., Medici, L., Ottolini, L. and Poppi, L. (2004) Crystal chemistry of apatites from the Tapira carbonatite complex, Brazil. Eur. Jour. Mineral., v.16, pp.677-685.

Chen, W. and Simonetti, A. (2013) In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history. Chem. Geol., v.353, pp.151-172

Chetty, T.R.K. (2001) The Eastern Ghats Mobile Belt, India: A collage of juxtaposed terranes (?). Gondwana Res., v.4, pp.319-328.

Czygan, W. and Goldenberg, G. (1989) Petrography and Geochemistry of the Alkaline Complexes of Sivamalai, Elchuru and Uppalapadu, India. Mem. Geol. Soc. India, v.15, pp.225-240.

Dawson, J.B. and Hinton, R.W. (2003) Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineral. Mag., v.67, pp.921-930.

Grady, J.C. (1971) Deep main faults in South India. Jour. Geol. Soc. India, v.12, pp.56-62.

Guzmics, T., Kodolanyi, J., Kovacs, I., Szabo, C., Bali, E. and Ntaflos, T. (2008) Primary carbonatite melt inclusions in apatite and in K-feldspar of clinopyroxene-rich mantle xenoliths hosted in lamprophyre dikes (Hungary). Mineral. Petrol., v.94, pp.225-242.

Guzmics, T., Mitchell, R.H., Szabo, C., Berkesi, M., Milke, R. and Abart, R. (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contrib. Mineral. Petrol., v.161, pp.177-196.

Hansteen, T.H., Sachs, P.M. and Lechtenberg, F. (2000) Synchrotron-XRF microprobe analysis of silicate reference standards using fundamental parameter quantification. Europ. Jour. Min., v.12, pp.25-32.

Hofmann, A. W. (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297-314.

Hornig-Kjarsgaard, I. (1998) Rare earth elements in sövitic carbonatites and their mineral phases. Jour. Petrol., v.39, pp.2105-2121.

Jochum, K.P., Dingwell, D.B., Rocholl, A., Stoll, B., Hofmann, A.W., Becker, S., Besmehn, A., Besesette, D., Dietze, H.-J., Dulski, P., Erzinger, J., Hellebrand, E., Hoppe, P., Horn, I., Janssens, K., Jenner, G., Klein, M., McDonough, W.M., Maetz, M., Mezger, K., Müker, C., Nikogosian, I.K., Pickhart, C., Raczek, I., Rhede, D., Seufert, H.M., Simakin, S.G., Sobolev, A.V., Spettel, B., Straub, S., Vincze, L., Wallianos, A., Weckwerth, G., Weyer, S., Wolf, D. and Zimmer, M., (2000) The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for In-Situ Microanalysis. Geostandards Newsletter, v.24, pp.87-133.

Keller, J. and Krafft, M. (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull. Volcanol., v.52, pp.629-645.

Keller, J. and Hoefs, J. (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell, K. and Keller, J. (Eds.), Carbonatite Volcanism: Oldoinyo Lengai and petrogenesis of natrocarbonatites. IAVCEI Proc. Volcanology, v.4, pp.113-123.

Klemme, S. and Dalpé, C. (2003) Trace-element partitioning between apatite and carbonatite melt. Amer. Mineral., v.88, pp.639-646.

Krishnamurthy, P. (1977) On some geochemical aspects of Sevattur carbonatite complex, North Arcot district, Tamil Nadu. Jour. Geol. Soc. India, v.18, pp.265-274.

Misra, S., Mohanta, A.K., Diwan, P. and Vishwakarma, N. (2015) Zonation of the Eastern Ghats Mobile Belt: A review. Internat. Jour. Geol. and Earth Sci., v.1, pp.46-54.

Möller, A., Schleicher, H. and Todt, W. (2000) Wechselbeziehungen innerhalb südindischer Karbonatit-Pyroxenit-Syenit-Komplexe: Verhalten von Spurenelementen. Bh. Europ. Jour. Mineral., v.12, pp.130.

Miyazaki, T., Kagami, H., Shuto, K., Morikiyo, T., Ram Mohan, V. and Rajasekaran, K.C. (2000) Rb-Sr-geochronology, Nd-Sr-isotopes and whole rock geochemistry of Yelagiri and Sevattur syenites, Tamil Nadu, South India. Gondwana Res., v.3, pp.39-53.

Ratnakar, J. and Leelanandam, C. (1989) Petrology of the alkaline plutons from the eastern and southern Peninsular India. Mem. Geol. Soc. India, no.15, pp.145-176.

Rickers, K., Mezger, K. and Raith, M.M. (2001) Evolution of the continental crust in the Proterozoic Eastern Ghats Belt, and new constraints for Rodinia reconstruction: implications from Sm-Nd, Rb-Sr and Pb-Pb isotopes. Precambrian Res., v.11, pp.183-212.

Roeder, P.L. (1985) Electron-microprobe analysis of minerals for Rare-EarthElements: Use of calculated peak-overlap corrections. Canad. Mineral., v.23, pp.263-271.

Schleicher, H., Todt, W., Viladkar, S.G. and Schmidt, F. (1997) Pb/Pb age determinations on the Newania and Sevattur carbonatites of India: evidence for multi-stage histories. Chem. Geol., v.140, pp.261-273.

Schleicher, H., Kramm, U., Pernicka, E., Schidlowski, M., Schmidt, F., Subramanian, V., Todt, W. and Viladkar, S.G. (1998) Enriched subcontinental upper mantle beneath southern India: Evidence from Pb, Nd, Sr, and C-O isotopic studies on Tamil Nadu carbonatites. Jour. Petrol., v.39, pp.1765-1785.

Shaw, D.M. (1970) Trace element fractionation during anatexis. Geochim. Cosmochim. Acta, v.34, pp.237-243.

Song, W., Xu, C., Veksler, I.V. and Kynicky, J. (2016) Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implication for rare metal mineralization. Contrib. Mineral. Petrol., v.171, pp.1-12

Subba Rao, T.V., Bhaskar Rao, Y.J., Sivaraman, T.V. and Gopalan, K. (1989) Rb-Sr age and petrology of the Elchuru alkaline complex: Implication to the alkaline magmatism in the Eastern Ghat mobile belt. Mem. Geol. Soc. India, no.15, pp.207-223.

Subramanian, V. (1983) Geology and geochemistry of the carbonatites of Tamil Nadu, India. Ph.D. thesis, Indian Institute of Science, Bangalore.

Subramanian, V., Viladkar, S.G. and Upendran, R. (1978) Carbonatite alkalic complex of Samalpatti, Dharampuri district, Tamil Nadu. Jour. Geol. Soc. India, v.19, pp.206-216.

Sun, S.-S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (Eds), Magmatism in the Oceanic Basins. Geol. Soc. Spec. Publ., v.42, pp.313-345.

Tarkian, M. and Stribrny, B. (1999) Platinum-group elements in porphyry copper deposits: a reconnaissance study. Mineral. Petrol., v.65, pp.161-183.

Udas, G.R. and Krishnamurthy, P. (1970) Carbonatites of Sevatthur and Jogipatti, Madras State, India. Proc. Indian National Science Academy, v.36, pp.331-343.

Unnikrishnan-Warrier, C., Santosh, M. and Yoshida, M. (1995) First report of Pan-African Sm-Nd and Rb-Sr mineral isochron ages from regional charnockites of southern India. Geol. Magz., v.132, pp.253-260.

Upadhyay, D. and Raith, M.M. (2006) Intrusion age, geochemistry and metamorphic conditions of a quartz-monzonite intrusion at the cratonEastern Ghats Belt contact near Jojuru, India. Gondwana Res., v.10, pp.267-276.

Upadhyay, D., Raith, M.M., Mezger, K. and Hammerschimdt, K., (2006) Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam alkaline province, SE India. Lithos, v.86, pp.447-477.

Viladkar, S.G. and Subramanian, V. (1995) Mineralogy and geochemistry of the carbonatites of the Sevathur and Samalpatti complexes, Tamil Nadu. Jour. Geol. Soc. India, v.45, pp.505-517.

Vincze, L. (1995) Monte Carlo simulation of conventional and synchrotron X-ray fluorescence spectrometers. Ph.D. thesis, Antwerpen University.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.