Morphology and Chemistry of Zircons from the Paleoproterozoic Cu (±Mo±Au) Hosting Granitoids of Malanjkhand Mine Area, Central India

Authors

  • Department of Geology, Centre of Advanced Study, Kumaun University, Nainital 263 002
  • Department of Geology, Centre of Advanced Study, Kumaun University, Nainital 263 002
  • Department of Geology, Centre of Advanced Study, Kumaun University, Nainital 263 002
  • Institute of Earth Science, Slovak Academy of Sciences, Dúbravska Cesta 9, 841 05 Bratislava, Slovakia
  • Institute of Earth Science, Slovak Academy of Sciences, Dúbravska Cesta 9, 841 05 Bratislava, Slovakia

DOI:

https://doi.org/10.1007/s12594-019-1171-3

Abstract

Morphology and chemistry of zircons from Paleoproterozoic granitoids (~2470 Ma) of Malanjkhand mine area, central India have been used to understand nature of parental magma and its evolutionary history. External morphology of nonmetamict zircons belongs to S3, S1-2, G1, P2, S24 and S25 subtypes of Pupin's typological scheme, which crystallized in a calc-alkaline, metaluminous hybridizing magma. The Zr/Hf ratios of zircons point to a low degree of differentiation of parental magma. Most zircons bear low sum of rare earth elements (∑REEZr) of 938°C suggesting its crystallisation in a relatively high-T intermediate magma composition. However, zircons with Th/U<1 bear Ti content below the detection limit (33 ppm) due to their crystallization in a relatively more evolved aluminous melt fraction of parental calc-alkaline magma. All zircons exhibit positive Ce- and negative Eu-anomalies, which probably indicate mildly oxidising magma condition of zircon crystallization synchronous with plagioclase.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2019-03-01

How to Cite

Arya, D., Gupta, S., Kumar, S., Broska, I., & Vaculovic, T. (2019). Morphology and Chemistry of Zircons from the Paleoproterozoic Cu (±Mo±Au) Hosting Granitoids of Malanjkhand Mine Area, Central India. Journal of Geological Society of India, 93(3), 257–262. https://doi.org/10.1007/s12594-019-1171-3

References

Acharyya, S. K. and Roy, A. (2000) Tectonothermal history of the Central Indian tectonic zone and reactivation of major faults/shear zones. Jour.Geol. Soc. India, v.55, pp.239–256.

Asthana, D., Kumar, H., Balakrishnan S., Xia, Q. and Feng, M. (2016). An early Cretaceous analogue of the ~2.5 Ga Malanjkhand porphyry Cu deposit, Central India. Ore Geol. Rev., v.72, pp.1197-1212.

Bea, F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Jour. Petrol., v.37, pp.521552.

Belousova, E.A., Griffin, W.L. and O'Reilly, S.Y. (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling: examples from eastern Australian granitoids. Jour. Petrol., v.47, pp.329–353.

Benisek, A. and Finger, F. (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib. Mineral. Petrol., v.114, pp.441-451.

Bhargava, M. and Pal, A.B. (1999) Anatomy of a porphyry copper depositMalanjkhand. Madhya Pradesh. Jour. Geol. Soc. India, v.53, pp.675– 691.

Bhargava, M. and Pal, A.B. (2000) Cu-Mo-Au metallogeny associated with Proterozoic tectono-magmatism in Malanjkhand porphyry copper district, M.P. Jour. Geol. Soc. India, v.56, pp. 395-413.

Broska, I. and Petrí­k, I. (2014). Accessory phases in the genesis of the igneous rocks. In: Kumar, S., Singh, R.N. (Eds.), Modelling of Magmatic and Allied Processes. Soc. Earth Sci., Ser, v.83, pp.109–149.

Corfu, F., Hanchar, J. M., Hoskin, P. W. O. and Kinny, P. (2003). Atlas of zircon textures. In: Hanchar, J. M. and Hoskin, P. W. O. (Eds.), Zircon.Reviews in Mineralogy and Geochemistry, v.53, pp.469–499.

Ferry, J.M. and Watson, E.B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib.Mineral. Petrol., v.154, pp.429–437.

Fu, B., Mernagh, T.P., Kita, N.T., Kemp, A.I.S. and Valley, J.W. (2009) Distinguishing magmatic zircon from hydrothermal zircon: A case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia. Chemical Geol., v.259, pp.131–142.

Griffin, W.L., Wang, X., Jackson S.E., Pearson, N.J., O'Reilly, S.Y., Xua, X.and Zhou, X. (2010) Zircon chemistry and magma mixing, SE China: Insitu analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, v.61, pp.237-269.

Heaman, L. M., Bowins, R. and Crocket, J. (1990). The chemical composition of igneous zircon suites: implications for geochemical tracer studies.Geochim. Cosmochim. Acta, v.54, pp.1597–1607.

Hönig, S., Èopjaková1, R., Å koda, R., Novák, M., Dolejš, D., Leichmann, J. and Galiová, M.V. (2014) Garnet as a major carrier of the Y and REE in the granitic rocks: An example from the layered anorogenic granite in the Brno Batholith, Czech Republic. Amer. Mineral., v.99, pp.1922–1941.

Hoskin, P. W. O. and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar, J.M. and Hoskin, P.W.O. (Eds.), Zircon. Reviews in Mineralogy and Geochemistry, v.53, pp.27–62.

Hoskin, P.W.O. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim.Cosmochim. Acta, v.69, pp.637–648.

Hoskin, P.W.O., Kinny, P.D. and Wyborn, D. (1998) Chemistry of hydrothermal zircon: investigating timing and nature of water-rock interaction. In: WaterRock Interaction, WRI-9. Arehart, G.B., Hulston, J.R. (Eds.), A.A.Balkema, Rotterdam, pp.545-548.

Jain, S.C., Yedekar, D.B., and Nair, K.K.K. (1991). Central Indian Shear Zone: a major pre-Cambrian crustal boundary. Jour. Geol. Soc. India., v.37, pp. 521–531.

Kirkland, C.L., Smithies, R.H., Taylor, R.J.M., Evans, N. and McDonald, B.(2015) Zircon Th/U ratios in magmatic environs. Lithos, v. 212-215, pp.397-414.

Kumar, S. and Rino, V. (2006). Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India: evidence of magma mixing, mingling, and chemical equilibration. Contrib.Mineral. Petrol., v.152, pp.591–609.

Kumar, S., Rino, V., and Pal, A.B. (2004a) Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India. Gondwana Res., v.7, pp.539–548.

Kumar, S., Rino, V. and Pal, A.B. (2004b) Typology and geochemistry of microgranular enclaves hosted in Malanjkhand granitoids, central India.Jour. Geol. Soc. India, v.64, pp.277–292.

Kumar, S., Rino, V., Hayasaka, Y., Kimura, K., Raju, S., Terada, K. and Pathak, M. (2017) Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry. Lithos, v.277, pp. 356-375.

Lankvelt, A. V., Schneider, D. A., Biczok, J., McFarlane, C. R. M. and Hattori, K. (2016) Decoding zircon geochronology of igneous and alteration events based on chemical and microstructural features: a study from the Western Superior Province, Canada, Jour. Petrol., v.57, pp. 1309–1334

Lawrie, K.C., Mernagh, T.P., Ryan, C.G., van Achterbergh, E. and Black, L.P. (2007) Chemical fingerprinting of hydrothermal zircons: an example from the Gidginbung high sulphidation Au–Ag–(Cu) deposit, Australia. Proc. Geologists' Assoc., v.118, pp.37–46.

Levinson, A. A. and Borup, R. A. (1960) High hafnium zircon from Norway. Amer. Mineral., v.45, pp.562–565.

Mall, D.M., Reddy, P.R. and Mooney, W.D. (2008) Collision tectonics of the Central Indian Suture zone as inferred from a deep seismic sounding study. Tectonophysics, v.460, pp.116-123.

Miller, J.,Matzel, J.,Miller, C., Burgess, S. and Miller, R. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Jour.Volcanol. Geotherm. Res., v.167, pp.282–299.

Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, v.38, pp.757-775.

Nardi, L.V.S., Formoso, M.L.L., Müller, I.F., Fontana, E., Jarvis, K. and Lamarí£o, C. (2013) Zircon/rock partitition coefficints of REEs, Y, Th, U, Nb and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chemical Geol., v.335, pp.1-7.

Nehru, C.E. and Sikka, D.B. (2018) Petrochemistry of dyke rocks from the Paleoproterozoic Malanjkhand porphyry copper mine, India: a possible link to the mineralization. Jour. Appl. Geochem., v.20, pp.1-28.

Pal, A.B. and Bhargava, M. (1998) Regional geology and petrochemistry of Proterozoic Cu-Mo mineralization in Malanjkhand granitoids, Madhya Pradesh. In: B.S. Paliwal, (Ed.), The Indian Precambrian. Scientific Publ. (India), Jodhpur, pp.333-350.

Pandit, D. (2014) Chloritization in Paleoproterozic granite ore system at Malanjkhand, Central India: mineralogical studied and mineral fluid equilibria modelling. Curr. Sci., v.106, pp.565-581.

Pandit, D. (2018) Crystallization evolution of accessory minerals in palaeoproterozoic granites of Bastar Craton, India. Curr. Sci., v.114, pp. 2329-2342.

Pandit, D. and Panigrahi, M.K. (2012) Comparative petrogenesis and tectonics of Paleoproterozoic Malanjkhand and Dongargarh granitoids, Central India. Jour. Asian Earth Sci., v. 50, pp. 14-26.

Pandit, D., Panigrahi, M. K., and Moriyama, T. (2014a) Constrains from magmatic and hydrothermal epidotes on crystallization of granitic magma and sulphide mineralization in Paleoproterozoic Malanjkhand Granitoid, Central India. Chem. der Erde, v.74, pp.715-733.

Pandit, D., Panigrahi, M. K., Moriyama, T., Ishihara, S. (2014b) Comparative geochemical, magnetic susceptibility, and fluid inclusion studies on Paleoproterozoic Malanjkhand and Dongargarh granitoids, central India and implications to metallogeny. Mineral. Petrol., v.108, pp.663-680.

Panigrahi M.K. and Mookherjee A. (1997): The Malanjkhand coper (+molybdenium) deposit, India: mineralisation from a low temperature ore fluid of granitoid affiliation. Mineralium Deposita, v.32, pp.133-148.

Panigrahi, M. K., Brendan, R. B., Misra, K. C. and Naik, R. K. (2004) Age of granitic activity associated with copper molybdenum mineralization as Malanjkhand, Central India. Miner. Deposita, v.39, pp.670–677.

Panigrahi, M.K., Bream, B.R., Mishra, K.C. and Naik, R.K. (2004) Age of granitic activity associated with copper-molybdenum mineralization at Malanjkhand, central India. Mineral. Deposita, v.39, pp.670–677.

Pettke, T., Audétat, A., Schaltegger, U. and Heinrich, C.A. (2001) Zircon trace element chemistry by LA-ICP-MS: a monitor for the magmatic-tohydrothermal evolution of a crystallizing pluton? Jour. Conf. Abstr., v.6, pp.680.

Pettke, T., Audetat, A., Schaltegger, U., Heinrich, C.A., 2005. Magmatic-tohydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia)”Part II: evolving zircon and thorite trace element chemistry.Chemical Geol., v.220, pp.191–213.

Pupin, J. P. (1980) Zircon and granite petrology. Contrib. Mineral. Petrol., v.73, pp.207–220.

Pupin, J. P. (2000) Granite genesis related to geodynamics from Hf–Y in zircon.Trans. Roy. Soc. Edinb. Earth Sci., v.91, pp.245–256.

Rai, K.L. and Venkatesh, A.S. (1993) Geological setting and nature of copper and molybdenum mineralization in the intra-continental acid magmatic regime of Malanjkhand, central India. Resource Geology, Special Issue, v.15, pp.285–297.

Ramachandra, H.M. and Roy, A. (1998). Geology of intrusive granitoids with particular reference to Dongargarh granite and their impacton tectonic evolution of the Precambrian in central India. Indian Miner., v.52 (1–2), pp.15–32.

Roy, A., Prasad, M.H., Bhowmik, S.K. (2001) Recognition of pre-Grenvillian and Grenvillian tectonothermal events in the Central Indian Tectonic Zones: implications on Rodinian crustal assembly. Gondwana Res., v.4, pp.755–757.

Rubatto, D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem.Geol., v.184, pp.123–138.

Sawka, W.N. (1988) REE and trace element variation in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California. Trans Roy Soc. Edinburgh: Earth Sci., v.79, pp.157-168.

Schaltegger, U., Schmitt, A.K. and Horstwood, M.S.A. (2015) U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geol., v.402, pp. 89-110.

Sikka, D.B. and Nehru, C.E. (1997) Review of Precambrian porphyry CuMo-Au deposits with special reference to Malanjkhand porphyry copper deposits, M.P. Jour. Geol. Soc. India, v.49, pp.239-288.

Sikka, D.B. and Nehru, C.E. (2002) Malanjkhand copper deposits, India: is it not a porphyry type? Jour. Geol. Soc. India, v.59, pp.339-362.

Sikka, D.B., Petruk, W.C., Nehru, E. and Zhang, Z. (1991) Geochemistry of secondary copper minerals from Proterozoic porphyry copper deposit, Malanjkhand, India. Ore Geol. Rev., v.6, pp.57–290.

Stein,H.J., Hannah, J.L., Zimmerman, A. and Markey, R.J. (2006).Mineralization and deformation of the Malanjkhand terrane (2,490–2,440 Ma) along the southern margin of the Central IndianTectonic Zone.

Mineralium Deposita, v.40,pp.755–765.

Stein, H.J., Hannah, J.L., Zimmerman, A., Markey, R.J., Sarkar, S.C. and Pal, A.B. (2004) A 2.5 Ga porphyry Cu-Mo-Au deposit at Malanjkhand, central India: implications for Late Archean continental assembly. Precambrian Res., v.134, pp.189–226.

Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: its Composition and Evolution. Oxford: Blackwell Scientific, pp.312.

Tripathi, C., Ghosh, P.K., Thambi, P.I., Rao, T.V. and Chandra, S. (1981).Elucidation of the stratigraphy and structure of Chilpi group. Geol. Surv. India, Special Publ., v.3, pp.17–30.

Vervoort, J. D. and Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. et Cosmochim. Acta, v.63, pp.533–556.

Von Knorring, O. and Hornung, G. (1961) Hafnian zircons. Nature, v.190, pp.1098–1099.

Wang, X., Griffin, W.L. and Chen, J. (2010) Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Jour., v.44, pp.65-72.

Wayne, D.M. and Sinha, A.K. (1992) Stability of zircon U-Pb systematics in a greenschist-grade mylonite: an example from the Rockfish Valley Fault Zone, Central Virginia, USA. Jour. Geol., v.10, pp.593-603.

Yedekar, D.B., Jain, S.C., Nair, K.K.K. and Dutta, K.K. (1990). The central Indian Collision Suture, in Precambrian of central India. Geol. Surv.India Spec. Publ., v.28, pp.1–43.

Most read articles by the same author(s)

1 2 3 > >>