Shear Wave Velocity Characteristics in Parts of Muscat, Sultanate of Oman – A Measure of Earthquake Hazard Assessment

Authors

  • Department of Earth Sciences, Sultan Qaboos University, Postal code 123, Alkhod, Muscat, Sulante of Oman
  • Earthquake Monitoring Centre, Sultan Qaboos University, Postal code 123, Alkhod, Muscat, Sulante of Oman
  • Earthquake Monitoring Centre, Sultan Qaboos University, Postal code 123, Alkhod, Muscat, Sulante of Oman
  • Earthquake Monitoring Centre, Sultan Qaboos University, Postal code 123, Alkhod, Muscat, Sulante of Oman
  • Earthquake Monitoring Centre, Sultan Qaboos University, Postal code 123, Alkhod, Muscat, Sulante of Oman
  • Department of Civil Engineering, Sultan Qaboos University, Postal code 123, Alkhod, Muscat, Sulante of Oman
  • Department of Civil Engineering, Sultan Qaboos University, Postal code 123, Alkhod, Muscat, Sulante of Oman
  • Department of Civil Engineering, Sultan Qaboos University, Postal code 123, Alkhod, Muscat, Sulante of Oman
  • Remote Sensing Centre, Sultan Qaboos University, Postal code 123, Alkhod, Muscat, Sulante of Oman
  • Department of Earth Sciences, Sultan Qaboos University, Postal code 123, Alkhod, Muscat, Sulante of Oman

DOI:

https://doi.org/10.1007/s12594-019-1212-y

Keywords:

No keywords

Abstract

Shear-wave velocity-depth information plays a significant role in assessing earthquake hazard of any region. Further, it is required for most investigations of ground motion response to earthquakes in areas where significant soil cover exists. The thickness and velocity of geologic formations are the vital parameters above the bedrock that affect the frequency band of the ground motion that may be strongly amplified by the local site conditions. In view of this, shear-wave velocity assumes great importance in earthquake hazard assessment studies. The characteristics of shear-wave velocity profile were determined by multichannel analysis of surface waves (MASW) technique in as many as 99 sites over different geological units in parts of Muscat city in order to evaluate probable hazard if any. The variations of shear wave velocity down to depths of 5 m, 10 m, 15 m and 30 m, respectively are presented. However, the average shear wave velocities calculated down to a depth of 30 m (VS30) vary between 345 m/s and 1197 m/s. The high range of shear-wave velocity almost rules out the liquefaction potential due to earthquakes of moderate to high magnitude.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2019-05-01

How to Cite

Sundararajan, N., El-Hussain, I., Mohamed, A. M. E., Deif, A., El-Hady, S., Al-Jabri, K., … Al-Wardi, M. (2019). Shear Wave Velocity Characteristics in Parts of Muscat, Sultanate of Oman – A Measure of Earthquake Hazard Assessment. Journal of Geological Society of India, 93(5), 515–522. https://doi.org/10.1007/s12594-019-1212-y

References

Aki, K. and Richards, P.G. (1980) Quantitative Seismology, Freeman and Co., New York.

Ambraseys, N.N. and Srbulov, M. (1994) Attenuation of earthquake-induced ground displacements. Earthquake Engineering and Structural Dynamics, v.23(5), pp.467–487.

Borcherdt, R.D. (1970) Effects of Local Geology on Ground Motion near San Francisco Bay. Bull. Seism. Soc. Am., v.60, pp.29-61.

Boore, D.M. (2004) Estimating Vs(30) (or NEHRP Site Classes) from Shallow Velocity Models (Depths < 30 m). Bull. Seismol. Soc. Amer., v.94, pp.591– 597. doi: 10.1785/0120030105

Building Seismic Safety Council (1994) NEHRP recommended provisions for seismic regulations for new buildings Part I –Provisions, Federal Emergency Management Agency, Washington, D.C., 290 p.

Brahma, J. (2011) Seismic Site Characterization Using Shear Wave Velocities of Gandhinagar City, Gujarat, India. Science and Technology, v.1, pp.1723. DOI:10.5923/j.scit.20110101.03

Bullen, K.E. (1963) An Introduction to the theory of Seismology, 3rd Edition, Cambridge University Press.

Dorman, J. and Ewing, M. (1962) Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the New YorkPennsylvania area. Jour. Geophys. Res., v.67, pp.5227-5241.

Droste, H.H.J. (1997) Stratigraphy of the Lower Paleozoic Haima Supergroup of Oman. GeoArabia, v.2, pp.419–492.

El-Hussain, I., A. Deif, K., Al-Jabri, A.M.E. Mohamed, G. Al-Rawas, M.N. Toksöz, N. Sundararajan, S. El- Hady, S. Al-Hashmi, S. Al-Hashmi, K.Al-Toubi, M. Al-Saifi Z Al-Habsi (2013) Seismic microzonation for Muscat region, Sultanate of Oman. Natural Hazards, v.69, pp.1919-1950. doi:10.1007/s11069-013-0785-9.

El-Hussain, I., Mohamed, A.M.E., Deif, A., Al-Rawas Gh., Al-Jabri, K., Pekman, G. (2014) Delineation of a paleo-channel utilizing integrated geophysical techniques at the port of Duqm area, Sultanate of Oman.

Jour. Geophys. Engg., v.11, 055005 (18pp). doi: 10.1088/1742-2132/11/ 5/055005.

El-Hussain, I., Deif, A., Mohamed, A.M.E., Al-Jabri, K., Gareth, B. And Yaqoup, H. (2015) Deterministic seismic hazard assessment close to a gas field in northern Oman. Arabian Jour. Geosci., v.8, pp.4299-4316.doi:10.1007/s12517-014-1388-8.

Hanna S. Samir (1995)Field guide to the Geology of Oman. Published by Historical Association of Oman.

Johnson, P.R. (1998) Tectonic map of Saudi Arabia and adjacent areas, Deputy Ministry for Mineral Resources, USGS TR-98-3, Saudi Arabia.

Kanli, A., Tildy, P., Pronay, Z., Pinar, A., Hermann, L. (2006) VS 30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey. Geophys. Jour. Internat., v.165, pp.223–235

Kramer, S.L. (1996) Geotechnical Earthquake Engineering, Prentice Hall, Inc., 653p.

Kusky, T., Robinson, C., El-Baz, F. (2005) Tertiary-Quaternary faulting and uplift in the northern Oman Hajar Mountains. Jour. Geol. Soc. London, v.162, pp.871-888.

Le Me´ tour, J., Villey, M. and De Gramont, X. (1986) Geological map of Quryat, Sheet NF 40-4D. Sultanate of Oman Ministry of Petroleum and Minerals, Directorate Generate of Minerals, Bureau de Recherches Ge´ologiques et Minie‘res, Muscat.

Louie, J.N. (2001) Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bull. Seismol. Soc. Amer., v.91(2), pp.347–364.

Mahajan, Siefko Slob, Rajiv Ranjan, Rob Sporry, P. K. Champati ray, and Cees J. van Westen (2007) Seismic microzonation of Dehradun City using geophysical and geotechnical characteristics in the upper 30 m of soil column. Jour. Seismol., v.11, pp.355–370.

Miller, R.D., Xia,J., Park, C.B. and Ivanov, J. (1999) Multichannel Analysis of Surface Waves to Map Bedrock, The Leading Edge, v.18(12), pp.13921396.

NEHRP (2001) NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA 368 and 369). 2000 ed.Washington, DC: Building Seismic Safety Council, National Institute of Building Sciences.

Mohamed, A.M.E., Deif, A., El-Hadidy, S., Moustafa, S.S.R., El Werr, A.(2008) Definition of soil characteristics and ground response at the northwestern part of the Gulf of Suez, Egypt. Jour. Geophys. Engg., v.5, pp.420– 437.

Mohamed, A.M.E. (2009) Estimating the near surface amplification factor to minimize earthquake damage: a case study at west Wadi Hagoul area, Gulf of Suez, Egypt. Jour. Geophys. Prospect., v.57, pp.1073–89.

Mohamed, A.M.E., Araffa, S.A. and Mahmoud, N. I. (2012) Near surface structures delineation using geological, geophysical and geotechnical techniques at the southern part of 15th May City, Cairo, Egypt. Pure Appld.Geophys., v.169, pp.1641-1654. doi:10.1007/s00024-011-0415-y.

Mohamed, A.M.E., Abu El Ata, A.S.A., Abdel Azim, F., Taha, M., (2013) Site-specific shear wave velocity investigation for geotechnical engineering applications using seismic refraction and 2D multi-channel anal-ysis of surface waves. NRIAG Jour. Astron. Geophys. v.2, pp.88–101.doi:10.1016/j.nriag.2013.06.012.

Mohamed, A.M.E., El-Hussain, I., Deif, A., Al-Jabri, K., Al Habsi, Z. and ElHady, S. (2016) Near-surface site characterization at Quriyat City, Sultanate of Oman using HVSR and MASW techniques. Arabian Jour.

Geosci., v.9: 23, pp.1-18. doi:10.1007/s12517-015-2061-7.

Ohori, M., Nobata, A. and Wakamatsu, K. (2002) A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor analysis. Bull. Seism. Soc. Amer., v.92, pp.2323-2332.

Olafsdottir, E.A., S. Erlingsson and B. Bessason (2018) Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils. Can. Geotech. Jour., v.55, pp.217– 233

Park, C.B., Miller, R.D., and Xia, J. (1999) Multi-Channel Analysis of Surface Waves. Geophys., v.64(3), pp.800-808.

Parolai, S., Bindi, D., Baumbach, M., Grosser, H., Milkereit, C., Karakisa, S.and Zunbul, S. (2004) Comparison of different site response estimation techniques using aftershocks of the 1999 Izmit earthquake. Bull. Seismol.Soc. Amer., v.94, pp.1096–1108.

Rabu, D., P. Nehlig, J. Roger, F. Béchennec, M. Beurrier, J. LeMetour, C.H. Bourdillon-de-Grissac, M. Tegyey. J. Chauvel, C. Cavelier, H. Al-Azri, Juteau, T., Janjou, Lemiere, D. B., Villey M. and Wyns, R. (1993) Stratigraphy and Structure of the Oman Mountains. Document BRGM, no. 221, Orleans, France.

Sairam, B., Singh, A.P., Patel, V., Pancholi, V., Chopra, S., Dwivedi, V.K., Ravi Kumar, M. (2018) Influence of Local Site Effects in the Ahmedabad Mega City on the Damage due to Past Earthquakes in Northwestern India.Bull. Seismol. Soc. Amer. doi.10.1785/0120170266

Seshunarayana, T. and Sundararajan, N. (2004) Multichannel analysis of surface waves (MASW) for mapping shallow subsurface layers – A case study, Jabalpur, India, 5th International Conference on Petroleum Geophysics, Hyderabad, India.

Stokoe II, K.H., Wright, G.W., James, A.B., and Jose, M.R. (1994) Characterization of Geotechnical Sites by SASW Method. In: Woods, R.D. (Ed.), Geophysical Characterization of Sites: ISSMFE Technical Committee #10, Oxford Publishers, New Delhi

Street, R., Wooley, E.W., Wang, Z., Harris, J.B. (2001) NEHRP soil classification for estimating site dependant seismic coefficients in the Upper Mississippi Embayment. Engg. Geol., v.62, pp.123–135.

Sundararajan N and Seshunarayana (2011)Liquefaction Hazard Assessment of Earth Quake Prone Area: A Study Based on Shear Wave Velocity by Multichannel Analysis of Surface Waves (MASW), Geotech. Geol. Engg., v.29, pp.267–275.

Sundararajan, N. and Seshunarayana, T. (2014) Surface wave studies for shear wave velocity and bedrock depth estimation over basalts: Arabian Jour. Geosci., v.7, pp.3791-3799.

Tian, G., Steeples D.W., Xia J., Miller R.D. (2003) Multichannel analysis of surface wave method with the autojuggie. Soil Dyn. Earthquake. Engg., v.23, pp.243–247.

Tokimatsu, K., Tamura, S., Kojima, H. (1992) Effects of multiple modes on Rayleigh wave dispersion characteristics. Jour. Geotech. Eng., v.118, pp.1529–43.

Wald, L. A. and Mori, J. (2000) Evaluation of methods for estimating linear site-response amplifications in the Los Angeles region. Bull. Seismol. Soc. Amer., v.90, pp.S32-S42.

Xia, J., Miller, R.D. , and Park, C.B. (1999) Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Wave”, Geophy., v.64(3), pp.691-700.

Xia, J., Miller, R.D., Park, C.B., Ivanov J. (2000) Construction of 2-D vertical shear wave velocity field by the multichannel analysis of surface wave technique. In: Proc. Symp. on Application of Geophysics to Engineering and Environmental Problems, Arlington, 20–24 February 2000.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.