On Granites

Authors

  • Department of Earth and Environmental Sciences, University of Waterloo, Canada, N2L 3G1

DOI:

https://doi.org/10.1007/s12594-019-1261-2

Abstract

Granites are important components of the Earth's continental crust and represent the net effect of thermochemical processes that operate during partial melting, magma extraction, ascent, emplacement and crystallization. Compositional and isotopic variations in granites arise from source heterogeneities, mixing in the source, and peritectic mineral entrainment as well as crystal fractionation and assimilation. Fluid-absent hydrate-breakdown melting reactions that accompany high-temperature metamorphism are responsible for differentiating the continental crust into a granitic upper portion and a residual lower portion. In some cases, melting can proceed through the influx of a hydrous fluid, although the significance of this on the long-term compositional differentiation of the continental crust is debated. Accessory minerals in granites are important chronometers and play a primary role in transferring the radiogenic isotope signature of sources to granites. Magma ascent and emplacement are guided by deformation and pluton construction is expected to be incremental with pluton heterogeneity being related to the interaction and differentiation of individual magma batches, as well as the extent to which melt separates from solid residual source material. The nature of the source plays a crucial role in the concentration of water and volatiles that are essential for the generation of hydrothermal–magmatic mineral deposits. Future studies of granites using non-traditional stable isotope systems are expected to provide new insights into the evolution of Earth's continental crust.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2019-07-01

How to Cite

Yakymchuk, C. (2019). On Granites. Journal of Geological Society of India, 94(1), 9–22. https://doi.org/10.1007/s12594-019-1261-2

References

Acosta-Vigil, A., Buick, I., Hermann, J., Cesare, B., Rubatto, D., London, D.and Morgan, G.B. (2010) Mechanisms of crustal anatexis: a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. Jour. Petrol., v.51, pp.785-821.

Ague, J.J. (1991) Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology, v.19, pp.855-858.

Anderson, J.L. (1983) Proterozoic anorogenic granite plutonism of North America. Geol. Soc. Amer. Mem., v.161, pp.133–154.

Annen, C., Blundy, J.D. and Sparks, R.S.J. (2006) The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Jour. Petrol., v.47, pp.505– 539.

Atherton, M.P. (1993) Granite magmatism. Jour. Geol. Soc. London, v.150, pp.1009–1023.

Ayres, M. and Harris, N. (1997) REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chem. Geol., v.139, pp.249–269.

Barbarin, B. (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, v.46, pp.605– 626.

Bartley, J.M., Coleman, D.S. and Glazner, A.F. (2008) Incremental pluton emplacement by magmatic crack-seal. Earth and Environmental Science.Trans. Royal Soc. Edinburgh, v.97, pp.383–396.

Bartoli, O., Acosta-Vigil, A., Ferrero, S. and Cesare, B. (2016) Granitoid magmas preserved as melt inclusions in high-grade metamorphic rock.Amer. Mineral., v.101, pp.1543–1559.

Barton, M.D. (1996) Granitic magmatism and metallogeny of southwestern North America. Earth and Environmental Science Trans. Royal Soc.f Edinburgh, v.87, pp.261–280.

Bea, F. (2012) The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos, v.153, pp.278–291.

Bea, F. and Montero, P. (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim. Cosmochim. Acta, v.63, pp.1133– 1153.

Berger, A., Burri, T., Alt-Epping, P. and Engi, M. (2008) Tectonically controlled fluid flow and water-assisted melting in the middle crust: an example from the Central Alps. Lithos, v.102, pp.598–615.

Bingen, B., Demaiffe, D. and Hertogen, J. (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway. Geochim.Cosmochim. Acta, v.60, pp.1341–1354.

Blereau, E., Clark, C., Taylor, R.J., Johnson, T., Fitzsimons, I. and Santosh, M. (2016) Constraints on the timing and conditions of high grade metamorphism, charnockite formation and fluid–rock interaction in the Trivandrum Block, southern India. Jour. Metamorph. Geol., v.34, pp.527– 549.

Blevin, P.L. and Chappell, B.W. (1992) The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.83, pp.305–316.

Blevin, P.L., Chappell, B.W. and Allen, C.M., 1996. Intrusive metallogenic provinces in eastern Australia based on granite source and composition. Earth and Environmental Science Trans. Royal Soc.Edinburgh, v.87, pp.281–290.

Blevin, P.L. and Chappell, B.W., 1995. Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia; the metallogeny of I-and S-type granites. Econ. Geol., v.90, pp.1604–1619.

Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M. and Schmitt, A.K. (2013) Zircon saturation re-revisited. Chem. Geol., v.351, pp.324–334.

Bonin, B. (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos, v.97, pp.1–29.

Brown, C.R., Yakymchuk, C., Brown, M., Fanning, C.M., Korhonen, F.J., Piccoli, P.M. and Siddoway, C.S. (2016) From Source to Sink: Petrogenesis of Cretaceous Anatectic Granites from the Fosdick Migmatite–Granite Complex, West Antarctica. Jour. Petrol., v.57, pp.1241–1278.

Brown, M. (1994) The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Sci. Rev., v.36, pp.83–130.

Brown, M. (2010) Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust. Can. Jour. Earth Sci., v.47, pp.655– 694.

Brown, M. (2013) Granite: From genesis to emplacement. Geol. Soc. Amer., Bull., v.125, pp.1079–1113.

Brown, M., Averkin, Y.A., McLellan, E.L. and Sawyer, E.W. (1995) Melt segregation in migmatites. Jour. Geophys. Res. B: Solid Earth, v.100, pp.15655–15679.

Brown, M. and Solar, G. (1999) The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm.Tectonophysics, v.312, pp.1–33.

Brown, M. and Rushmer, T. (eds) (2006) Evolution and Differentiation of the Continental Crust. Cambridge, New York. 553p.

Campbell, I. and Taylor, S. (1983) No water, no granites No oceans, no continents. Geophys. Res. Lett., v.10, pp.1061–1064.

Candela, P.A. and Holland, H.D. (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim.Cosmochim. Acta, v.48, pp.373–380.

Candela, P.A. and Piccoli, P.M. (2005) Magmatic Processes in the Development of Porphyry-Type Ore Systems. Econ. Geol., v.100, pp.25–37.

Carmichael, I.S. (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contr. Mineral. Petrol., v.106, pp.129– 141.

Carvalho, B., Sawyer, E. and Janasi, V. (2016) Crustal reworking in a shear zone: transformation of metagranite to migmatite. Jour Metamorph. Geol., v.34, pp.237–264.

Carvalho, B.B., Bartoli, O., Ferri, F., Cesare, B., Ferrero, S., Remusat, L., Capizzi, L.S., and Poli, S. (2018). Anatexis and fluid regime of the deep continental crust: new clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy). Jour. Metamorph Geol, in press.https://doi.org/10.1111/jmg.12463.

Cernyí¬, P. (1991) Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. Geoscience Canada, v.18, pp.68–81.

Cernyí¬, P., Blevin, P.L., Cuney, M. and London, D. (2005) Granite-related ore deposits. Econ. Geol., v.100, pp.337–370.

Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D. and Cavallo, A. (2009) "Nanogranite” and glassy inclusions: The anatectic melt in migmatites and granulites. Geology, v.37, pp.627–630.

Chappell, B., White, A. and Wyborn, D. (1987) The importance of residual source material (restite) in granite petrogenesis. Jour. Petrol., v.28, pp.1111–1138.

Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacif.Geol., v.8, pp.173–174.

Chappell, B.W. and White, A.J., 2001. Two contrasting granite types: 25 years later. Australian Jour. Earth Sci., v.48, pp.489–499.

Chappell, B.W., 2004. Towards a unified model for granite genesis. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.95, pp.1–10.

Chen, G.-N. and Grapes, R. (2007) Granite Genesis: In-Situ Melting and Crustal Evolution. Springer Netherlands. 278p.

Clark, C., Fitzsimons, I.C., Healy, D. and Harley, S.L. (2011) How does the continental crust get really hot? Elements, v.7, pp.235–240.

Clarke, D.B. (1992) Granitoid Rocks. Springer, London. 284p.

Clemens, J.D. (2003) S-type granitic magmas”petrogenetic issues, models and evidence. Earth Sci. Rev., v.61, pp.1–18.Clemens, J.D. (2006) Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: M. Brown and T. Rushmer (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge, pp.296–327.

Clemens, J.D. (2011, Sept 20). Re: distinguishing I- and S-type granites [Electronic mailing list message]. Retrieved from https://www.jiscmail.ac.uk/lists/geo-metamorphism.html

Clemens, J.D. and Petford, N. (1999) Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings. Jour. Geol. Soc., v.156, pp.1057– 1060.

Clemens, J.D. and Stevens, G. (2012) What controls chemical variation in granitic magmas? Lithos, v.134, pp.317–329.

Clemens, J.D. and Stevens, G. (2015) Comment on ‘Water-fluxed melting of the continental crust: A review' by RF Weinberg and P. Hasalová. Lithos, v.234, pp.100–101.

Clemens, J.D., Stevens, G. and Farina, F. (2011) The enigmatic sources of Itype granites: the peritectic connexion. Lithos, v.126, pp.174–181.

Clemens, J.D. and Watkins, J. (2001) The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contrib. Mineral. Petrol., v.140, pp.600–606.

Clemens, J.D. and Droop, G.T.R. (1998) Fluids, P–T paths and the fates of anatectic melts in the Earth's crust. Lithos, v.44, pp.21–36.

Clemens, J.D. and Stevens, G. (2016) Melt segregation and magma interactions during crustal melting: Breaking out of the matrix. Earth Sci. Rev., v.160, pp.333–349.

Cobbing, J. (2000) The Geology and Mapping of Granite Batholiths. SpringerVerlag, Berlin. 141p.

Coleman, D.S., Gray, W. and Glazner, A.F. (2004) Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology, v.32, pp.433–436.

Coleman, R.G. and Peterman, Z.E. (1975) Oceanic plagiogranite. Jour.Geophys. Res., v.80, pp.1099–1108.

Collins, W. (1996) Lachlan Fold Belt granitoids: products of three-component mixing. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, v.87, pp.171–181.

Collins, W., Beams, S., White, A. and Chappell, B. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contr.Mineral. Petrol., v.80, pp.189–200.

Compston, W. and Chappell, B.W. (1979). Sr-isotope evolution of granitoid source rocks. In: Jaeger, J.C. and Hales, A. (Eds.), The Earth: its origin, structure and evolution. pp.377–426.

Cottle, J.M., Larson, K.P. and Yakymchuk, C. (2018) Contrasting accessory mineral behavior in minimum-temperature melts: Empirical constraints from the Himalayan metamorphic core. Lithos, v.312, pp.57–71.

Couzinié, S., Laurent, O., Moyen, J.-F., Zeh, A., Bouilhol, P. and Villaros, A.

(2016) Post-collisional magmatism: Crustal growth not identified by zircon Hf–O isotopes. Earth Planet. Sci. Lett., v.456, pp.182–195.

Creaser, R.A., Price, R.C. and Wormald, R.J. (1991) A-type granites revisited: assessment of a residual-source model. Geology, v.19, pp.163–166.

Cruden, A. 2006. Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust. In: M. Brown and T.Rushmer (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge. pp. 455–519.

Cuney, M. and Kyser, K. (2009) Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineral. Assoc.Canada, 272p.

Cuney, M., Marignac, C. and Weisbrod, A. (1992) The Beauvoir topazlepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ. Geol., v.87, pp.1766– 1794.

Dhuime, B., Hawkesworth, C. and Cawood, P. (2011) When continents formed.Science, v.331, pp.154–155.

Diener, J.F.A. and Fagereng, í…. (2014) The influence of melting and melt drainage on crustal rheology during orogenesis. Jour. Geophys. Res. B: Solid Earth, v.119, pp.6193–6210.

Diener, J. F., White, R. W. and Hudson, T. J. (2014) Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer. Lithos, v.200, pp.212–225.

Eby, G.N. (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, v.26, pp.115–134.

Eby, G.N. (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, v.20, pp.641–644.

Einaudi, M.T., Hedenquist, J.W. and Inan, E.E. (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Spec. Publ. Soc. Econ. Geol., v.10, pp.285–314.

Farina, F., Stevens, G. and Villaros, A. (2012) Multi-batch, incremental assembly of a dynamic magma chamber: the case of the Peninsula pluton granite (Cape Granite Suite, South Africa). Mineral. Petrol., v.106, pp.193– 216.

Fisher, C.M., Hanchar, J.M., Miller, C.F., Phillips, S., Vervoort, J.D. and Whitehouse, M.J. (2017) Combining Nd isotopes in monazite and Hf isotopes in zircon to understand complex open-system processes in granitic magmas. Geology, v.45, pp.267–270.

Flowerdew, M., Millar, I., Vaughan, A., Horstwood, M. and Fanning, C. (2006) The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U–Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contrib. Mineral. Petrol., v.151, pp.751–768.

Foden, J., Sossi, P.A. and Wawryk, C.M. (2015) Fe isotopes and the contrasting petrogenesis of A-, I-and S-type granite. Lithos, v.212, pp.32–44.

Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A geochemical classification for granitic rocks. Jour. Petrol., v.42, pp.2033–2048.

Frost, B.R. and Frost, C.D. (2008) On charnockites. Gondwana Res., v.13, pp.30–44.

Frost, C.D. and Ronald Frost, B. (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology, v.25, pp.647–650.

Frost, C.D. and Frost, B.R. (2010) On ferroan (A-type) granitoids: their compositional variability and modes of origin. Jour. Petrol., v.52, pp.39– 53.

Gao, L.-E., Zeng, L. and Asimow, P.D. (2017) Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, v.45, pp.39–42.

Garcia-Arias, M. and Stevens, G. (2017) Phase equilibrium modelling of granite magma petrogenesis: A. An evaluation of the magma compositions produced by crystal entrainment in the source. Lithos, v.277, pp.131– 153.

Gardien, V., Thompson, A.B., Grujic, D. and Ulmer, P. (1995) Experimental melting of biotite+ plagioclase+ quartz±muscovite assemblages and implications for crustal melting. Jour. Geophys. Res. B: Solid Earth, v.100, pp.15581–15591.

Gardiner, N.J., Hawkesworth, C.J., Robb, L.J., Whitehouse, M.J., Roberts, N.M., Kirkland, C.L. and Evans, N.J. (2017) Contrasting granite metallogeny through the zircon record: a case study from Myanmar. Scientific reports, v.7, pp.748.

Glazner, A.F., 2007. Thermal limitations on incorporation of wall rock into magma. Geology, v.35, pp.319–322.

Hammerli, J., Kemp, A.I.S. and Spandler, C. (2014) Neodymium isotope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals. Earth Planet. Sci. Lett., v.392, pp.133–142.

Harris, L.B. and Bédard, J.H. (2015) Interactions between continent-like ‘drift', rifting and mantle flow on Venus: gravity interpretations and Earth analogues. Geol. Soc. London, Spec. Publ., v.401, pp.327–356.

Harris, N., Vance, D. and Ayres, M. (2000) From sediment to granite: timescales of anatexis in the upper crust. Chem. Geol., v.162, pp.155–167.

Harrison, T.M. and Watson, E.B. (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contr. Mineral. Petrol., v.84, pp.66–72.

Harrison, T.M. and Watson, E.B. (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim. Cosmochim.Acta, v.48, pp.1467–1477.

Hawkesworth, C. and Kemp, A. (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol., v.226, pp.144–162.

Holland, T.J.B., Green, E.C.R. and Powell, R. (2018) Melting of Peridotites through to Granites: A Simple Thermodynamic Model in the System KNCFMASHTOCr. Jour. Petrol., v.59, pp.881–900.

Holness, M.B. and Sawyer, E.W. (2008) On the pseudomorphing of meltfilled pores during the crystallization of migmatites. Jour. Petrol., v.49, pp.1343–1363.

Holtz, F. and Barbey, P. (1991) Genesis of peraluminous granites II. Mineralogy and chemistry of the Tourem Complex (North Portugal). Sequential melting vs. restite unmixing. Jour. Petrol., v.32, pp.959–978.

Hoskin, P.W. and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem., v.53, pp.27–62.

Howie, R.A. (1955) The geochemistry of the charnockite series of Madras, India. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.62, pp.725–768.

Iles, K.A., Hergt, J.M. and Woodhead, J.D. (2018) Modelling isotopic responses to disequilibrium melting in granitic systems. Jour. Petrol., v.59, pp.87– 113.

Ishihara, S. (1977) The magnetite-series and ilmenite-series granitic rocks.Mining Geol., v.27, pp.293–305.

Jagoutz, O.E., Burg, J.-P., Hussain, S., Dawood, H., Pettke, T., Iizuka, T. and Maruyama, S. (2009) Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contr. Mineral. Petrol., v.158, pp.739–755.

Jeon, H. and Williams, I.S. (2018) Trace inheritance”Clarifying the zircon O-Hf isotopic fingerprint of I-type granite sources: Implications for the restite model. Chem. Geol., v.476, pp.456–468.

Johnson, T., Hudson, N. and Droop, G. (2003) Evidence for a genetic granite– migmatite link in the Dalradian of NE Scotland. Jour. Geol. Soc. London., v.160, pp.447–457.

Johnson, T.E., Clark, C., Taylor, R.J., Santosh, M. and Collins, A.S. (2015) Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India. Geosci. Front., v.6, pp.373– 387.

Jung, C., Jung, S., Nebel, O., Hellebrand, E., Masberg, P. and Hoffer, E. (2009) Fluid-present melting of meta-igneous rocks and the generation of leucogranites”Constraints from garnet major-and trace element data, Lu– Hf whole rock–garnet ages and whole rock Nd–Sr–Hf–O isotope data.Lithos, v.111, pp.220–235.

Kelsey, D., Clark, C. and Hand, M. (2008) Thermobarometric modelling of zircon and monazite growth in melt bearing systems: Examples using model metapelitic and metapsammitic granulites. Jour. Metamorph. Geol., v.26, pp.199–212.

Kelsey, D.E. and Powell, R. (2011) Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2H2O-TiO2-ZrO2 system. Jour. Metamorph. Geol., v.29, pp.151–166.

Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M. and Whitehouse, M.J. (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, v.315, pp.980–983.

Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Foster, G.L., Kinny, P.D, Whitehouse, M.J. and Maas, R. (2008) Exploring the plutonic-volcanic link: A zircon U-Pb, Lu-Hf and O isotope study of paired volcanic and granitic units from southeastern Australia. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.97, pp.337–355.

Kilpatrick, J.A. and Ellis, D.J. (1992) C-type magmas: igneous charnockites and their extrusive equivalents. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.83, pp.155–164.

Klimm, K., Blundy, J.D. and Green, T.H. (2008) Trace Element Partitioning and Accessory Phase Saturation during H2O-Saturated Melting of Basalt with Implications for Subduction Zone Chemical Fluxes. Jour. Petrol., v.49, pp.523–553.

Koblinger, B. M. and Pattison, D. R.M. (2017). Crystallization of Heterogeneous Pelitic Migmatites: Insights from Thermodynamic Modelling. Jour. Petrol., v.58, p.297–326.

Kohn, M.J., Corrie, S.L. and Markley, C. (2015) The fall and rise of metamorphic zircon. Am. Mineral., v.100, pp.897–908.

Korhonen, F.J., Brown, M., Grove, M., Siddoway, C.S., Baxter, E. and Inglis, J.D. (2012) Separating metamorphic events in the Fosdick migmatite– granite complex, West Antarctica. Jour. Metamorph. Geol., v.30, pp.165– 192.

Korhonen, F.J., Saito, S., Brown, M. and Siddoway, C.S. (2010a) Modeling multiple melt loss events in the evolution of an active continental margin.Lithos, v.116, pp.230–248.

Korhonen, F.J., Saito, S., Brown, M., Siddoway, C.S. and Day, J.M.D. (2010b) Multiple Generations of Granite in the Fosdick Mountains, Marie Byrd Land, West Antarctica: Implications for Polyphase Intracrustal Differentiation in a Continental Margin Setting. Jour. Petrol., v.51, pp.627– 670.

Kretz, R. (1983) Symbols for rock-forming minerals. Amer. Mineral., v.68, pp.277–279.

Kunz, B.E., Regis, D. and Engi, M. (2018) Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C? Contrib. Mineral.Petrol., v.173, pp.26.

Lappin, A. and Hollister, L. (1980) Partial melting in the Central gneiss complex near Prince Rupert, British Columbia. Amer. Jour. Sci., v.280, pp.518– 545.

Laurent, O., Martin, H., Moyen, J.-F. and Doucelance, R. (2014) The diversity and evolution of late-Archean granitoids: Evidence for the onset of "modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos, v.205, pp.208–235.

Le Breton, N. and Thompson, A.B. (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contr.Mineral. Petrol., v.99, pp.226–237.

Lee, Y. and Cho, M. (2013) Fluid-present disequilibrium melting in Neoarchean arc-related migmatites of Daeijak Island, western Gyeonggi Massif, Korea.Lithos, v.179, pp.249–262.

Lehmann, B. (1990) Large-scale tin depletion in the Tanjungpandan tin granite, Belitung Island, Indonesia. Econ. Geol., v.85, pp.99–111.

Li, W., Jackson, S.E., Pearson, N.J., Alard, O. and Chappell, B.W. (2009) The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia.Chem. Geol., v.258, pp.38–49.

Li, X., Niu, M., Yakymchuk, C., Yan, Z., Fu, C. and Zhao, Q. (2018) Anatexis of former arc magmatic rocks during oceanic subduction: A case study from the North Wulan gneiss complex. Gondwana Res., v.61, pp.128– 149.

Linnen, R.L. (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+ F; constraints for mineralization in rare metal granites and pegmatites. Econ. Geol., v.93, pp.1013–1025.

Loiselle, M.C. and Wones, D.R. 1979. Characteristics and origin of anorogenic granites. In: Geological Society of America Abstracts with Programs. v.11, p.468.

London, D. (2014) Subsolidus isothermal fractional crystallization. Amer.Mineral., v.99, pp.543–546.

Macera, P., Di Pisa, A. and Gasperini, D. (2011) Geochemical and Sr–Nd isotope disequilibria during multi-stage anatexis in a metasedimentary Hercynian crust. European Jour. Mineral., v.23, pp.207–222.

Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D. (2005).An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, v.79, pp.1-24.

Martin, H., Moyen, J.-F. and Rapp, R. (2009) The sanukitoid series: magmatism at the Archaean–Proterozoic transition. Earth and Environmental Science Trans. Royal Soc. Edinburgh, v.100, pp.15–33.

Matzel, J.E., Bowring, S.A. and Miller, R.B. (2006) Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geol. Soc. Amer.Bull., v.118, pp.1412–1430.

McCulloch, M.T. and Chappell, B.W. (1982) Nd isotopic characteristics of Sand I-type granites. Earth Planet. Sci. Lett., v.58, pp.51–64.

Michel, J., Baumgartner, L., Putlitz, B., Schaltegger, U. and Ovtcharova, M.(2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky. Geology, v.36, pp.459–462.

Milord, I., Sawyer, E.W. and Brown, M. (2001) Formation of Diatexite Migmatite and Granite Magma during Anatexis of Semi-pelitic Metasedimentary Rocks: an Example from St. Malo, France. Jour. Petrol., v.42, pp.487–505.

Morfin, S., Sawyer, E.W. and Bandyayera, D. (2014) The geochemical signature of a felsic injection complex in the continental crust: Opinaca Subprovince, Quebec. Lithos, v.196–197, pp.339–355.

Moyen, J.-F. and Stevens, G. (2006) Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. American Geophysical Union Geophysical Monograph, v.164, pp.149.

Moyen, J.-F. and Laurent, O. (2018) Archaean tectonic systems: A view from igneous rocks. Lithos, v.302–303, pp.99–125.

Moyen, J.-F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe,O., Zeh, A., Villaros, A. and Gardien, V. (2017) Collision vs. subductionrelated magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos, v.277, pp.154–177.

Moyen, J.-F. and Martin, H. (2012) Forty years of TTG research. Lithos, v.148, pp.312–336.

Nédélec, A. and Bouchez, J.-L. (2015) Granites: Petrology, Structure, Geological Setting, and Metallogeny. Oxford University Press, New York.331p.

Newton, R.C. and Tsunogae, T. (2014) Incipient charnockite: Characterization at the type localities. Precambrian Res, v.253, pp.38–49.

O'Neil, J.R. and Chappell, B.W. (1977). Oxygen and hydrogen isotope relations in the Berridale batholith. Jour. Geol. Soc., v.133, pp.559–571.

O'Neil, J., Shaw, S. and Flood, R. (1977) Oxygen and hydrogen isotope compositions as indicators of granite genesis in the New England Batholith, Australia. Contr. Mineral. Petrol., v.62, pp.313–328.

Palin, R.M., White, R.W., Green, E.C., Diener, J.F., Powell, R. and Holland, T.J. (2016) High grade metamorphism and partial melting of basic and intermediate rocks. Jour. Metamorph. Geol., v.34, pp.871–892.

Pankhurst, R.J., Weaver, S.D., Bradshaw, J.D., Storey, B.C. and Ireland, T.R.(1998) Geochronology and geochemistry of pre Jurassic superterranes in Marie Byrd Land, Antarctica. Jour. Geophys. Res. B: Solid Earth, v.103, pp.2529–2547.

Parnell, J., Hole, M., Boyce, A.J., Spinks, S. and Bowden, S. (2012) Heavy metal, sex and granites: Crustal differentiation and bioavailability in the mid-Proterozoic. Geology, v.40, pp.751–754.

Patiño Douce, A.E. and Harris, N. (1998) Experimental constraints on Himalayan anatexis. Jour. Petrol., v.39, pp.689–710.

Petford, N., Cruden, A., McCaffrey, K. and Vigneresse, J.-L. (2000) Granite magma formation, transport and emplacement in the Earth's crust. Nature, v.408, pp.669.

Petford, N., Kerr, R.C. and Lister, J.R. (1993) Dike transport of granitoid magmas. Geology, v.21, pp.845–848.

Piccoli, P. and Candela, P. (1994) Apatite in felsic rocks; a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas.Amer. Jour. Sci., v.294, pp.92–135.

Pitcher, W.S. (1997) The Nature and Origin of Granite. Springer, Netherlands.387p.

Pressley, R.A. and Brown, M. (1999) The Phillips pluton, Maine, USA: evidence of heterogeneous crustal sources and implications for granite ascent and emplacement mechanisms in convergent orogens. Lithos, v.46, pp.335–366.

Rajesh, H. (2007) The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: a case study from southern India.Contr. Mineral. Petrol., v.154, pp.591–606.

Rajesh, H. and Santosh, M. (2004) Charnockitic magmatism in southern India.Journal of Earth System Science, v.113, pp.565–585.

Rajesh, H. and Santosh, M. (2012) Charnockites and charnockites. Geosci.Front., v.3, pp.737–744.

Rajesh, H., Santosh, M. and Yoshikura, S. (2010) The Nagercoil charnockite: a magnesian, calcic to calc-alkalic granitoid dehydrated during a granulitefacies metamorphic event. Jour. Petrol., v.52, pp.375–400.

Rosenberg, C. and Handy, M. (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. Jour.Metamorph. Geol., v.23, pp.19–28.

Rubatto, D. (2017) Zircon: the metamorphic mineral. Rev. Mineral. Geochem., v.83, pp.261–295.

Rubatto, D., Williams, I.S. and Buick, I.S. (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contr.Mineral. Petrol., v.140, pp.458–468.

Rudnick, R.L. and Fountain, D.M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, v.33, pp.267–309.

Rutter, E.H. and Mecklenburgh, J. 2006. The extraction of melt from crustal protoliths and the flow behavior of partially molten crustal rocks: an experimental perspective. In: M. Brown and T. Rushmer. (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge University Press.

Samperton, K.M., Bell, E.A., Barboni, M., Keller, C.B. and Schoene, B. (2017) Zircon age-temperature-compositional spectra in plutonic rocks. Geology, v.45, pp.983–986.

Samperton, K.M., Schoene, B., Cottle, J.M., Keller, C.B., Crowley, J.L. and Schmitz, M.D. (2015) Magma emplacement, differentiation and cooling in the middle crust: Integrated zircon geochronological–geochemical constraints from the Bergell Intrusion, Central Alps. Chem. Geol., v.417, pp.322–340.

Sautter, V., Toplis, M., Wiens, R., Cousin, A., Fabre, C., Gasnault, O., Maurice, S., Forni, O., Lasue, J. and Ollila, A. (2015) In situ evidence for continental crust on early Mars. Nature Geoscience, v.8, pp.605.

Savage, P.S., Georg, R.B., Williams, H.M., Turner, S., Halliday, A.N. and Chappell, B.W. (2012) The silicon isotope composition of granites.Geochim. Cosmochim. Acta, v.92, pp.184–202.

Sawyer, E.W. (1991) Disequilibrium melting and the rate of melt–residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. Jour. Petrol., v.32, pp.701–738.

Sawyer, E.W. (1998) Formation and evolution of granite magmas during crustal reworking: the significance of diatexites. Jour. Petrol., v.39, pp.1147– 1167.

Sawyer, E.W., Cesare, B. and Brown, M. (2011). When the continental crust melts. Elements, v.7, pp.229–234.

Sawyer, E. (2014) The inception and growth of leucosomes: microstructure at the start of melt segregation in migmatites. Jour. Metamorph. Geol., v.32, pp.695–712.

Sawyer, E.W. (1987) The Role of Partial Melting and Fractional Crystallization in Determining Discordant Migmatite Leucosome Compositions. Jour.Petrol., v.28, pp.445–473.Sawyer, E.W. (2008) Atlas of migmatites. NRC Research Press.

Schaltegger, U., Brack, P., Ovtcharova, M., Peytcheva, I., Schoene, B., Stracke, A., Marocchi, M. and Bargossi, G.M. (2009) Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet. Sci. Lett., v.286, pp.208–218.

Schaltegger, U. and Davies, J.H. (2017) Petrochronology of zircon and baddeleyite in igneous rocks: Reconstructing magmatic processes at high temporal resolution. Rev. Mineral. Geochem., v.83, pp.297–328.

Schoene, B. (2014) 4.10-U–Th–Pb Geochronology. Treatise on geochemistry, 2nd edition. v.4, pp.341–378.

Schoene, B., Schaltegger, U., Brack, P., Latkoczy, C., Stracke, A. and Günther, D. (2012) Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet. Sci. Lett., v.355, pp.162–173.

Schwindinger, M. and Weinberg, R.F. (2017) A felsic MASH zone of crustal magmas”Feedback between granite magma intrusion and in situ crustal anatexis. Lithos, v.284, pp.109–121.

Shen, B., Jacobsen, B., Lee, C.-T.A., Yin, Q.-Z. and Morton, D.M. (2009) The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proc. National Acad. Sci., v.106, pp.20652–20657.

Shirey, S.B. and Hanson, G.N. (1984) Mantle-derived Archaean monozodiorites and trachyandesites. Nature, v.310, pp.222–224.

Siddoway, C.S., Richard, S.M., Fanning, C.M., Luyendyk, B.P. and Whitney, D. (2004) Origin and emplacement of a middle Cretaceous gneiss dome, Fosdick Mountains, West Antarctica. Geol. Soc. Amer. Spec. Paper, pp.267–294.

Skjerlie, K.P. and Johnston, A.D. (1992) Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites. Geology, v.20, pp.263–266.

Slagstad, T., Jamieson, R.A. and Culshaw, N. (2005) Formation, crystallization, and migration of melt in the mid-orogenic crust: Muskoka domain migmatites, Grenville Province, Ontario. Jour. Petrol., v.46, pp.893–919.

Solar, G.S. and Brown, M. (2001) Petrogenesis of Migmatites in Maine, USA: Possible Source of Peraluminous Leucogranite in Plutons? Jour. Petrol., v.42, pp.789–823.

Stepanov, A.S., Hermann, J., Rubatto, D. and Rapp, R.P. (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem. Geol., v.300, pp.200–220.

Stevens, G. and Clemens, J.D. (1993) Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary? Chem. Geol., v.108, pp.1–17.

Stevens, G., Villaros, A. and Moyen, J.-F. (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites.Geology, v.35, pp.9–12.

Streckeisen, A. (1976) To each plutonic rock its proper name. Earth Sci. Rev., v.12, pp.1–33.Strong, D. (1981) Ore deposit models-5. A model for granophile mineral deposits. Geoscience Canada, v.8.

Tang, M., Wang, X.-L., Shu, X.-J., Wang, D., Yang, T. and Gopon, P. (2014) Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of "zircon effect” in crustal anatexis.

Earth Planet. Sci. Lett., v.389, pp.188–199.

Tartèse, R. and Boulvais, P. (2010) Differentiation of peraluminous leucogranites "en route” to the surface. Lithos, v.114, pp.353–368.

Taylor, H.P. (1968). The oxygen isotope geochemistry of igneous rocks. Contrib. Mineral. Petrol., v.19, pp.1–71.

Taylor, J. and Stevens, G. (2010) Selective entrainment of peritectic garnet into S-type granitic magmas: Evidence from Archaean mid-crustal anatectites. Lithos, v.120, pp.277–292.

Taylor, R.J., Kirkland, C.L. and Clark, C. (2016) Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. Lithos, v.264, pp.239–257.

Thompson, A. (1983) Fluid-absent metamorphism. Jour. Geol. Soc. London, v.140, pp.533–547.

Thompson, A.B. (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Amer. Jour. Sci., v.282, pp.1567– 1595.

Tuttle, O.F. and Bowen, N.L. (1958). Origin of granite in the light of experimental studies in the system: NaAlSi3O8. Geol. Soc. Amer. Mem., v74.

Valley, J., Lackey, J., Cavosie, A., Clechenko, C., Spicuzza, M., Basei, M., Bindeman, I., Ferreira, V., Sial, A. and King, E. (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contr.Mineral. Petrol., v.150, pp.561–580.

Vavra, G. (1994) Systematics of internal zircon morphology in major Variscan granitoid types. Contr. Mineral. Petrol., v.117, pp.331–344.

Vigneresse, J.L., Barbey, P. and Cuney, M. (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Jour. Petrol., v.37, pp.1579–1600.

Vigneresse, J.L., Barbey, P. and Cuney, M. (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Jour. Petrol., v.37, pp.1579–1600.

Villaros, A., Stevens, G., Moyen, J.-F. and Buick, I.S. (2009) The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contr. Mineral. Petrol., v.158, pp.543–561.

Wall, V.J., Clemens, J.D. and Clarke, D.B. (1987) Models for granitoid evolution and source compositions. Jour. Geol., v.95, pp.731–749.

Wang, W., Dunkley, E., Clarke, G.L. and Daczko, N.R. (2014) The evolution of zircon during low-P partial melting of metapelitic rocks: theoretical predictions and a case study from Mt Stafford, central Australia. Jour.Metamorph. Geol., v.32, pp.791–808.

Watkins, J., Clemens, J.D. and Treloar, P.J. (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contr. Mineral. Petrol., v.154, pp.91–110.

Watson, E.B. (1979) Apatite saturation in basic to intermediate magmas.Geophys. Res. Lett., v.6, pp.937–940.

Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett., v.64, pp.295–304.

Watt, G.R. and Harley, S.L. (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced during waterundersaturated partial melting. Contr. Mineral. Petrol., v.114, pp.550– 566.

Wawryk, C.M. and Foden, J.D. (2015) Fe-isotope fractionation in magmatichydrothermal mineral deposits: a case study from the Renison Sn–W deposit, Tasmania. Geochim. Cosmochim. Acta, v.150, pp.285–298.

Weinberg, R.F. and Hasalová, P. (2015) Water-fluxed melting of the continental crust: A review. Lithos, v.212, pp.158–188.

Whalen, J.B. (1985) Geochemistry of an island-arc plutonic suite: the UasilauYau Yau intrusive complex, New Britain, PNG. Jour. Petrol., v.26, pp.603– 632.

Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contr. Mineral. Petrol., v.95, pp.407–419.

White, A.J.R. and Chappell, B.W. (1974) Two contrasting granite types. Pacific Geology, v.8, pp.173–174.

White, A.J.R. (1979). Sources of granite magmas. In Geological Society of America Abstracts with Programs. p. 539.

White, R.W., Stevens, G. and Johnson, T.E. (2011) Is the crucible reproducible?Reconciling melting experiments with thermodynamic calculations.Elements, v.7, pp.241–246.

Whitney, J.A. (1988) The origin of granite: The role and source of water in the evolution of granitic magmas. Geol. Soc. Amer. Bull., v.100, pp.1886– 1897.

Williams, M.A., Kelsey, D.E., Baggs, T., Hand, M. and Alessio, K.L. (2018) Thorium distribution in the crust: Outcrop and grain-scale perspectives.Lithos, v.320–321, pp.222–235.

Wolfram, L., Weinberg, R., Hasalová, P. and Becchio, R. (2017) How Melt Segregation Affects Granite Chemistry: Migmatites from the Sierra de Quilmes, NW Argentina. Jour. Petrol., v.58, pp.2339–2364.

Wray, J.J., Hansen, S.T., Dufek, J., Swayze, G.A., Murchie, S.L., Seelos, F.P., Skok, J.R., Irwin III, R.P. and Ghiorso, M.S. (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience, v.6, pp.1013.

Wu, Y.B., Zheng, Y.F., Zhang, S.B., Zhao, Z.F., Wu, F.Y. and Liu, X.M. (2007) Zircon U–Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting. Jour.Metamorph. Geol., v.25, pp.991–1009.

Yakymchuk, C. (2017a) Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth.Lithos, v.274–275, pp.412–426.

Yakymchuk, C. (2017b) Applying Phase Equilibria Modelling to Metamorphic and Geological Processes: Recent Developments and Future Potential.2017, pp.27-45.

Yakymchuk, C. and Brown, M. (2014a) Consequences of open-system melting in tectonics. Jour. Geol. Soc. London, v.171, pp.21–40.

Yakymchuk, C. and Brown, M. (2014b) Behaviour of zircon and monazite during crustal melting. Jour. Geol. Soc. London, v.171, pp.465–479.

Yakymchuk, C., Siddoway, C.S., Fanning, C.M., Mcfadden, R., Korhonen, F.J. and Brown, M. (2013a) Anatectic reworking and differentiation of continental crust along the active margin of Gondwana: a zircon Hf–O perspective from West Antarctica. Geol. Soc. London, Spec. Publ., v.383, pp.SP383. 387.

Yakymchuk, C., Brown, M., Ivanic, T.J. and Korhonen, F.J. (2013b) Leucosome distribution in migmatitic paragneisses and orthogneisses: A record of self-organized melt migration and entrapment in a heterogeneous partiallymolten crust. Tectonophysics, v.603, pp.136–154.

Yakymchuk, C., Brown, M., Clark, C., Korhonen, F.J., Piccoli, P.M., Siddoway, C.S., Taylor, R.J.M. and Vervoort, J.D. (2015a) Decoding polyphase migmatites using geochronology and phase equilibria modelling. Jour.Metamorph. Geol., v.33, pp.203–230.

Yakymchuk, C., Brown, C.R., Brown, M., Siddoway, C.S., Fanning, C.M., and Korhonen, F.J. (2015b) Paleozoic evolution of western Marie Byrd Land, Antarctica. Geol. Soc. Amer. Bull., v.127, pp.1464-1484.

Yakymchuk, C., Clark, C. and White, R.W. (2017). Phase Relations, Reaction Sequences and Petrochronology In: M.J. Kohn and P. Lanari (Eds), Petrochronology, pp.13–53.

Yakymchuk, C., Kirkland, C.L. and Clark, C. (2018) Th/U ratios in metamorphic zircon. Jour. Metamorph. Geol., v.36, pp.715–737.

Yamato, P., Duretz, T., May, D.A. and Tartese, R. (2015) Quantifying magma segregation in dykes. Tectonophysics, v.660, pp.132–147.

Yardley, B.W. and Valley, J.W. (1997) The petrologic case for a dry lower crust. Jour. Geophys. Res. B: Solid Earth, v.102, pp.12173–12185.

Zeck, H. and Williams, I. (2002) Inherited and Magmatic Zircon from Neogene Hoyazo Cordierite Dacite, Se Spain”anatectic Source Rock Provenance and Magmatic Evolution: in Memoriam Professor Chris Powell, 2001.07.21. Jour. Petrol., v.43, pp.1089–1104.

Zeng, L., Asimow, P.D. and Saleeby, J.B. (2005) Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochim. Cosmochim.Acta, v.69, pp.3671–3682.

Zeng, L., Saleeby, J.B. and Asimow, P. (2005) Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology, v.33, pp.53–56.