Land Use/Land Cover Changes Over a District in Northern India using Remote Sensing and GIS and their Impact on Society and Environment

Authors

  • Centre for Remote Sensing and Geoinformatics, Sathyabama Institute of Science and Technology, Chennai - 600 119
  • Centre for Remote Sensing and Geoinformatics, Sathyabama Institute of Science and Technology, Chennai - 600 119

DOI:

https://doi.org/10.1007/s12594-020-1407-2

Keywords:

No Keywords.

Abstract

This study focuses on exploring changes in Land Use and Land Cover (LULC) over Baramulla district of Kashmir using remote sensing and Geographic Information System (GIS). Linkage of LULC with evapotranspiration and precipitation is also explored in this paper. LULC were categorised into dense forest, sparse forest, water body and other classes by using geospatial satellite data from Landsat for the years 1979, 2001 to 2018. The dense forest and water body show decrease in extent from 1979 to 2018. A decrease of about 27% has been reported from 1979 to 2018 in dense forest. Furthermore, water body shows a reduction of about 36% during the same time span. Significant changes in dense forest and water body affected the water cycle of the region. Reduction in dense forest and water body resulted in significant decrease in evapotranspiration which caused reduction in precipitation over the study area. Reduced precipitation over study area caused conversion from agriculture to horticulture. Increase of about 55% in horticulture has been reported with decrease of about 54% in agriculture over study area. Evapotranspiration from reanalysis shows coherent variation with precipitation from India Meteorological Department (IMD) gridded product. A decadal decrease of about 0.5% in evapotranspiration resulting in decrease of about 0.38% in precipitation over study area is reported. Increased horticulture causes increase in black carbon due to increased biomass which results in increased warming over study area. Changes reported in this study may cause a significant socioeconomic and environmental impact over Baramulla.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-02-29

How to Cite

Meer, M. S., & Mishra, A. K. K. (2020). Land Use/Land Cover Changes Over a District in Northern India using Remote Sensing and GIS and their Impact on Society and Environment. Journal of Geological Society of India, 95(2), 179–182. https://doi.org/10.1007/s12594-020-1407-2

References

Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E., (1976) A Land Use and Land Cover Classií»cation System for Use with Remote Sensor Data. USGS Prof. 964. DOI:10.3133/pp964.

Burn, D.H., Hesch, N.M. (2007) Trends in evaporation for the Canadian prairies. Jour. Hydrol., v.336(1-2), pp.61-73. DOI: 10.1016/j.jhydrol.2006.12.011

Brutsaert Amp,W., and Parlange, M.B. (1998) Hydrologic cycle explains the evaporation paradox. Nature, v.396(6706), pp.30.

Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., De Angelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D. and Kinne, S. (2013) Bounding the role of black carbon in the climate system: A scientific assessment. Jour. Geophys. Res., Atmospheres, v.118(11), pp.5380-5552.

Croitoru, A.E., Piticar, A., Dragotí£, C.S.,Burada, D.C. (2013) Recent changes in reference evapotranspiration in Romania. Glob. Planet. Change, v.111, pp.127-137.

Dinpashoh, Y., Jhajharia, D., Fakheri-Fard, A., Singh, V.P., Kahya, E. (2011) Trends in reference crop evapotranspiration over Iran. Jour. Hydrol., v.399(3-4), pp.422-433.

Ellison, D.N., Futter, M., Bishop, K. (2012) On the forest cover-water yield debate: fromdemand- to supply-side thinking. Glob. Chang. Biol., v.18(3), pp.806-820.

Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M.F., Hook, S., Baldocchi, D., Townsend, P.A. and Kilic, A. (2017) The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res., v.53(4), pp.2618-2626.

Golubev, V.S., Lawrimore, J.H., Groisman, P.Y., Speranskaya, N.A., Zhuravin, S.A., Menne,M.J., Peterson, T.C., Thomas, C., Malone, R.W. (2001) Evaporation changes over the contiguous united states and the former USSR: a reassessment. Geophys. Res. Lett., v.28(13), pp.2665-2668.

Gao, G., Chen, D., Ren, G., Chen, Y., Liao, Y. (2006) Spatial and temporal variations and controlling factors of potential ET in china: 1956-2000. Jour. Geogr. Sci., v.16(1), pp.3-12.

Irmak, S., Kabenge, I., Skaggs, K.E., Mutiibwa, D. (2012) Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte river basin, central Nebraska-USA. Jour. Hydrol., v.420(4), pp.228-244. DOI: 10.1016/j.jhydrol.2011.12.006.

Li, P., Li, H., Yang, G., Zhang, Q. and Diao, Y. (2018) Assessing the Hydrologic Impacts of Land Use Change in the Taihu Lake Basin of China from 1985 to 2010. Water, v.10(11), p.1512.

Mishra, A.K. (2019) Quantifying the impact of global warming on precipitation patterns in India. Meteorological Applications, v.26(1), pp.153-160.

Peterson, T.C., Golubev, V.S., Groisman, P.Y. (1995) Evaporation losing its strength. Nature, v.377(6551), pp.687-588.

Rafiq, M., Mishra, A.K. and Meer, M.S. (2018) On land-use and land-cover changes over Lidder Valley in changing environment. Annals of GIS, v.24(4), pp.275-285.

Rafiq, M. and Mishra, A. (2016) Investigating changes in Himalayan glacier in warming environment: a case study of Kolahoi glacier. Environ. Earth Sci., v.75(23), pp.1469.

Roderick,M.L., Farquhar, G.D. (2002) The cause of decreased pan evaporation over the past 50 years. Science, v.298(5597), pp.1410-1411.

Roderick, M.L., Farquhar, G.D. (2004) Changes in Australian pan evaporation from 1970 to 2002. Internat. Jour. Climatol., v.24(9), pp.1077-1090. DOI: 10.1002/joc.1061

Roderick, M.L., Farquhar, G.D. (2011) A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res., v.47, pp.1-11. DOI:10.1029/2010WR009826

Romshoo, S.A., Rafiq, M. and Rashid, I. (2018) Spatio-temporal variation of land surface temperature and temperature lapse rate over mountainous Kashmir Himalaya. Jour. Mountain Sci., v.15(3), pp.563-576.

Sun, G., Mcnulty, S.G., Myers, J.A.M., Cohen, E.C. (2008) Impacts of multiple stresses on water demand and supply across the Southeastern United States. Jour. Amer. Water Resour. Assoc., v.44(6), pp.1441-1457. DOI:10.1111/j.1752-1688.2008.00250.x

Tang, B., Tong, L., Kang, S., Zhang, L. (2011) Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe river basin of north China. Agric. Water Manag., v.98(10), pp.1660-1670. DOI: 10.1016/j.agwat.2011.06.006.

Xu, C.Y., Gong, L., Jiang, T., Chen, D., Singh, V.P., 2006a. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze river) catchment. Jour. Hydrol., v.327(1-2), pp.81-93.

Yu, P.S., Yang, T.C., Chou, C.C. (2002) Effects of climate change on evapotranspiration from paddy fields in southern Taiwan. Clim. Change, v.54(1), pp.165-179.

Zhang, Y., Liu, C., Tang, Y., Yang, Y. (2007) Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan plateau. Jour. Geophys. Res. Atmos., v.112(D12), pp.1103-1118.

Zheng, H., Liu, X., Liu, C., Dai, X., Zhu, R. (2009) Assessing contributions to panevaporation trends in Haihe River Basin, China. Jour. Geophys. Res., v.114, D24105.

Zhang L., Dawes, W.R., Walker, G.R., 2001. Response of mean annual ET to vegetation changes at catchment scale. Water Resour. Res., v.37, pp.701-708. DOI:10.1029/2000WR900325.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.