Geochemistry of the Biotite from Pegmatites of Kudi Valley, Paddar Area, District Kishtwar, Jammu and Kashmir

Authors

  • P G Department of Geology, University of Jammu
  • P G Department of Geology, University of Jammu
  • P G Department of Geology, University of Jammu
  • P G Department of Geology, University of Jammu
  • P G Department of Geology, University of Jammu

DOI:

https://doi.org/10.1007/s12594-020-1426-z

Keywords:

No Keywords.

Abstract

The pegmatites of Kudi valley, Paddar area are mineralogically characterised by the presence of Na-plagioclase, quartz, perthite, tourmaline, biotite with minor amount of muscovite, sillimanite, and garnet. The biotite mineral from the pegmatites show higher Al2O3, FeO, K2O, moderate SiO2, MgO, Cr2O3, TiO2, F; and low Na2O, CaO, MnO, Cl concentration. They are classified as siderophyllite type. The geochemical signature of biotite indicates the peraluminous nature of the pegmatitic melt generated from the melting of continental crust in the syn-tectonic collision setting. They are mostly magmatic; however, some of them also show reequilibrated nature. The biotite crystallised at high temperature (600°°C-700°C) at low oxygen fugacity. 3Mg↔2Al and coupled substitution between LiIV+SiIV=(Fe2+)IV played an important role during the crystallisation of the studied biotite.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2020-03-31

How to Cite

Srivastava, P. . K., Singh, P., Arora, N., Namga, S., & Magotra, R. (2020). Geochemistry of the Biotite from Pegmatites of Kudi Valley, Paddar Area, District Kishtwar, Jammu and Kashmir. Journal of Geological Society of India, 95(3), 279–285. https://doi.org/10.1007/s12594-020-1426-z

References

Abdel Rahman, A. (1994) Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Jour. Petrol., v.35, pp.525-541.

Abrecht, J. and Hewitt, D.A. (1988) Experimental evidence on the substitution of Ti in biotite. Amer. Mineral., v.73, pp.1275-1284.

Buda, G., Koller, F., Kovács, J., and Ulrych, J. (2004) Compositional variation of biotite from Variscan granitoids in Central Europe: a statistical evaluation. Acta Mineralogica-Petrographica, Szeged, v.45(1), pp.21-37.

Czamanske, G.K. and Wones, D.R. (1973) Oxidation during magmatic differentiation, finnmarka complex, osla area, Norway: Part 2, the mafic silicates. Jour. Petrol., v.14, pp.349-380.

De Albuquerque G.A.R. (1973) Geochemistry of biotites from granitic rocks, northern Portugal. Geochim. Cosmochim. Acta, v.37, pp.1779-802.

Deer, W.A., Howie, R.A. and Zussman, J. (1966) An Introduction to the RockForming Minerals. Sheet silicates Longmans, Green and Co., London. pp. 528.

Esmaeily, D., Maghdour-Mas hhour, R. and Tabbak H. Shabani, A.A. (2013) Chemical characteristics of biotite from Boroujerd Granitoid complex (Middle Jurassic), Western Iran. Geopersia, v.3(1), pp.69-78.

Föster, M.D. (1960) Interpretation of the composition of trioctahedral mica. USGS Prof., Paper, pp.11-49.

Frank, Wolfgang, Grasemann, Bernhard, Guntli, Peter, and Miller, Christine (1995) Geological map of the Kishtwar-Chamba-Kulu region (NW Himalayas, India). Jahrbuch der Geologischen Bundesanstalt, v.138(2), pp.299-308.

Fuchs, G. (1975) Contributions to the geology of the North-Western Himalayas (Vol. 32). Geolog. Bundesanst.

Guidotti, C.V. (1984) Micas in metamorphic rocks. Rev. Mineral., v.13, pp.357467.

Heinrich E.W. (1946) Studies in the mica group; the biotite-phlogopite series. Amer. Jour. Sci., v.244, pp.836-48.

Henderson, C.M.B., Martin, J.S. and Mason, R.A. (1989) Compositional relations in Li-mieas from SW England and France: an ion and electron microprobe study. Mineral. Mag., v.53, pp.427-49.

Henry, D.J. and Guidotti C.V. (2002) Titanium in biotite from metapelitic rocks: temperature effects, crystal-chemical controls, and petrologic applications. Amer. Mineral., v.87, pp.375-382

Henry, D.J., Guidotti, C.V. and Thomson, J.A. (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Amer. Mineral., v.90, pp.316-328

Herren, E. (1987) Zanskar shear zone: Northeast-southwest extension within the Higher Himalayas (Ladakh, India). Geology, v.15(5), pp.409-413.

Icenhower, J.P., and London, D. (1993) An experimental study of the partitioning of fluorine between biotite and silicic melts. Geol. Soc. Amer. Abst. with Programs, v.25(6), pp.A-372.

Karimpour, M.H., Stern, C.R. and Mouradi, M. (2011) Chemical composition of biotite as a guide to petrogenesis of granitic rocks from Maherabad, Dehnow, Gheshlagh, Khajehmourad and Najmabad Iran, Iranian. Jour. Crystal. Mineral., v.18, pp.89-100.

Kundig, R. (1989) Domal structures and high grade metamorphism in the Higher Himalayan Crystalline, Zanskar Region, north west Himalaya, India. Jour. Metamor. Geol., v.7(1), pp.43-55.

Mason, R.A. (1992) Models of order and iron-fluorine avoidance in biotite. Canadian Mineral., v.30, pp.343-354.

Munoz, J.L. and Ludington, S.D. (1977) Fluoride-hydroxyl exchange in synthetic muscovite and its application to muscovite-biotite assemblages. Amer. Mineral., v.62, pp.304-308.

Munoz, J. L. and Swenson, A. (1981) Chloride-hydroxyl exchange in biotite and estimation of relative HCl/HF activities in hydrothermal fluids. Econ.Geol., v.76, pp.2212-2221.

Munoz, J.L. (1984) F-OH and Cl-OH exchange in mica with application to hydrothermal ore deposits. Rev. Mineral., v.13, pp.469-493.

Nachit, H., Ibhi, A., Abia, E.H. and Ohoud, M.B. (2005) Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geosci., v.337, pp.1415-1420.

Nockolds, S.R. (1947) The relation between chemical composition and paragenesis in the biotite micas of igneous rocks. Amer. Jour. Sci. v.245, pp.401-20.

Parry, W. and Jacobs, D.C. (1975) Fluorine and chlorine in biotite from Basin and Range plutons. Econ. Geol., v.70, pp.554-558.

Parsapoor, A., Dilles, J.H., Khalili, M., Mackizadeh, M.A. and Maghami, M. (2014) Stable isotope record of hydrothermal sulfate, sulfide and silicate minerals in the Darreh-Zar porphyry copper deposit in Kerman, southeastern Iran: implications for petrogenesis and exploration. Jour. Geochem. Explor., v.143, pp.103-115.

Patino Douce, A.E. (1993) Titanium substitution in biotite an empirical model with applications to thermometry, O2 and H2O barometries, and consequences form biotite stability. Chemical Geol., v.108, pp.133-162.

Ramberg, H. (1952) Chemical bonds and the distribution of cations in silicates.Jour. Geol., v.60. pp.33l-355.

Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1998) Nomenclature of the micas. Canadian Mineral., v.36, pp.905-912.

Robert, J.L. (1976) Titanium solubility in synthetic phlogopite solid solutions. Chemical Geol., v.17, pp.213-227.

Rosenberg and Foit (1977) Fe2+-F avoidance in silicates. Geochim. Cosmochim. Acta., v.4t, pp.345-346.

Shabani A.A.T., Lalonde A.E., Whalen J.B. (2003) Composition of biotite from granitic rocks of the Canadian Appalachian: A potential tectonomagmatic indicator? Canadian Mineralogist, v.41, pp.1381-1396

Sheibi, M., Esmaeily, D., Nédélec, N., Bouchez, J.L. & Kananian, A. (2010) Geochemistry and petrology of garnet-bearing S-type Shir-Kuh Granite, southwest Yazd, Central Iran. Island Arc, v.9, v.292-312.

Singh, K. (2010) Tectonic evolution of Kishtwar window with respect to the Main Central Thrust, northwest Himalaya, India. Jour. Asian Earth Sci., v.39(3), pp.125-135.

Singh, R. (2007) Geology of Kishtwar region, Jammu & Kashmir Himalaya, India with special emphasis on the Salkhalas, central crystallines; their relationship and implication on main central thrust. Jour. Geol. Soc. India, v.69(4), pp.699.

Speer, J.A. (1984) Micas in Igneous Rocks. In: S.W. Bailey, Ed., Micas: Reviews in Mineralogy, Mineralogical Society of America, Washington DC, v.13, pp.299-356.

Stäubli, A. (1989). Polyphase metamorphism and the development of the Main Central Thrust. Jour. Metamorp. Geol., v.7(1), pp.73-93.

Stephenson, B.J., Waters, D.J. and Searle, M.P. (2000) Inverted metamorphism and the Main Central Thrust: field relations and thermobarometric constraints from the Kishtwar Window, NW Indian Himalaya. Jour. Metamorp. Geol., v.18(5), pp.571-590.

Stone, M., Exley, C.S., George, M.C., (1988). Compositions of trioctahedral micas in the Cornubian Batholith. Mineral. Magz., v.52, pp.17-5192.

Stone, M., Klomí­nskí½, J. and Rajpoot, G.S. (1997) Composition of trioctahedral micas in the Karlovy Vary pluton, Czech Republic and a comparison with those in the Cornubian batholith, SW England. Mineral. Magz., Jour. Mineral Sci., v.61(6), pp.791-807.

Tewari, A.P. (1981) Exotic thrust mass of the Padar area in Kashmir. Tectonophysics, v.73(4), pp.285-294.

Tindle, A.G. and Webb, P.C. (1990) Estimation of lithium contents in trioctahedral micas using microp- robe data: application to micas from granitic rocks. European Jour. Mineral., v.2, pp.595-610.

Wones D. R. and Eugster. P. (1965) Stability of biotite: experiment, theory and applications. Amer. Mmineral., v.50, pp.1228-72.

Yoder H. S. J. R. and Eugster H. P. (1954) Phlogopite synthesis and stability range. Geochim. Cosmochim. Acta, v.6, pp.157-85.

Zen, E. (1988) Phase relations of peraluminous granitic rocks and their petrogenetic implications. Earth Planet. Sci. Annual Rev., v.16, pp.21-51.

Zhu, C. and Sverjensky, D.A. (1992) F-Cl-OH partitioning between biotite and apatite. Geochim. Cosmochim. Acta, v.56, pp.3435-3467.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.