Soft Sediment Deformation Structures in Quaternary Sediments from Dadra and Nagar Haveli, Western India

Authors

  • Institute of Seismological Research, Raisan, Gandhinagar – 382 009
  • Institute of Seismological Research, Raisan, Gandhinagar – 382 009
  • Institute of Seismological Research, Raisan, Gandhinagar – 382 009
  • Institute of Seismological Research, Raisan, Gandhinagar – 382 009

DOI:

https://doi.org/10.1007/s12594-020-1462-8

Keywords:

No Keywords.

Abstract

Quaternary sediments are preserved in disconnected patches along the middle and lower reaches of major river valleys like Damanganga, Par, Ratakhadi and Dongarkhadi in the Dadra and Nagar Haveli region of Konkan coastal belt, Western India. These deposits mainly consist of stratified sand, silt, clay and gravel beds. The study area has been earlier affected by moderate earthquakes. The identified soft-sediment deformation structures (SSDS) are mainly developed in the sand silt, sand gravel and clay beds; and includes intrusive sedimentary bodies (dykes and sills), slump structures, suspended clast blocks and convolute structures. The nature, shape and dimension of SSDS suggest that the trigger mechanism and driving forces for the origin of these structures were seismic shock waves. Sediment loading and storm events as a trigger for the SSDS are less likely the reason and the proximity of these structures to the faults support the inference that it may be of seismic origin. Deformation in the Quaternary sediments of Dadra and Nagar Haveli imply the presence of neotectonic activity and points to an earthquake of magnitude >5.5 that struck the study area after sediment deposition.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2020-05-31

How to Cite

Kumar, N., Mohan, K., Dumka, R. K., & Chopra, S. (2020). Soft Sediment Deformation Structures in Quaternary Sediments from Dadra and Nagar Haveli, Western India. Journal of Geological Society of India, 95(5), 455–464. https://doi.org/10.1007/s12594-020-1462-8

References

Alfaro, P., Moretti, M. and Soria, J.M. (1997) Soft-sediment deformation structures induced by earthquakes (seismites) in pliocene lacustrine deposits (Guadix-Baza Basin. Central Betic Cordillera). Eclogae Geologicae Helvetiae, v.90(3), pp.531-540.

Alfaro, P., Estévez, A., Moretti, M. and Soria, J.M. (1999) Structures sédimentaires de déformation interprétées comme séismites clans le quaternaire du bassin du bas segura (cordillère bétique orientale). Comptes Rendus de l'Académie des Sciences-Series IIA-Earth Planet. Sci., v.328(1), pp.17-22.

Alfaro, P., Delgado, J., Estévez, A., Molina, J., Moretti, M. and Soria, J. (2002) Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). Internat. Jour. Earth Sci., v.91(3), pp.505-513.

Allen, J.R.L. (1982) Sedimentary structures, their character and physical basis (Vol. 1). Elsevier.

Allen, J.R.L. (1977) The possible mechanics of convolute lamination in graded sand beds. Jour. Geol. Soc. London, v.134(1), pp.19-31.

Alsop, G.I. and Marco, S. (2012) Tsunami and seiche-triggered deformation within offshore sediments. Sediment. Geol., v.261, pp.90-107.

Anketell, J.M. (1970) On the deformational structures in systems with reversed density gradients. In: Annales Societatis Geologorum Poloniae, Vol. 40, No. 1, pp.3-30.

Atkinson, G.M., Finn, W.L. and Charlwood, R.G. (1984) Simple computation of liquefaction probability for seismic hazard applications. Earthquake Spectra, v.1(1), pp.107-123.

Auden, J.B. (1949) Dykes in western India-A discussion on their relationships with the Deccan Traps. Trans. Nat. Inst. Sci. India, v.3, pp.123-157.

Balkema, A.A. (1997) Handbook on Liquefaction Remediation of Reclaimed Land, Port and Harbour Research Institute.

Bansal, B.K. and Gupta, S. (1998) A glance through the seismicity of peninsular India. Jour. Geol. Soc. India, v.52(1), pp.67-80.

Berra, F. and Felletti, F. (2011) Syndepositional tectonics recorded by softsediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sediment. Geol., v.235(3-4), pp.249-263.

Besse, J. and Courtillot, V. (1988) Paleogeographic maps of the Indian Ocean bordering continents since the Upper Jurassic. Jour. Geophys. Res., v.93, pp.11-791.

Bhattacharya, H.N. and Bandyopadhyay, S. (1998) Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sediment. Geol., v.119(3-4), pp.239-252.

Biswas, S.K. (1982) Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin. AAPG Bull., v.66(10), pp.1497-1513.

Biswas, S.K. (1987) Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, v.135(4), pp.307327.

Brandes, C. and Tanner, D.C. (2012) Three-dimensional geometry and fabric of shear deformation-bands in unconsolidated Pleistocene sediments. Tectonophysics, v.518, pp.84-92.

Burke, K. and Dewey, J.F. (1973) Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. Jour. Geol., v.81(4), pp.406-433.

Calvo, J.P., Rodriguez Pascua, M., Martin Velazquez, S., Jimenez, S. and Vicente, G.D. (1998) Microdeformation of lacustrine laminite sequences from Late Miocene formations of SE Spain: an interpretation of loop bedding. Sedimentology, v.45(2), pp.279-292.

Chandra, U. (1977) Earthquakes of Peninsular India-A Seismotectonic Study. Bull. Seismol. Soc. Amer., v.67(5), pp.1387-1413.

Chakraborty, A. (1977) Upward flow and convolute lamination. Senckenbergiana Marit, v.9, pp.285-305.

Chen, J. and Lee, H.S. (2013) Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): Differential liquefaction and fluidization triggered by storm-wave loading. Sediment. Geol., v.288, pp.81-94.

Cojan, I. and Thiry, M. (1992) Seismically induced deformation structures in Oligocene shallow-marine and aeolian coastal sands (Paris Basin). Tectonophysics, v.206(1-2), pp.79-89.

Cox, K.G. (1988). Inaugural address In: K.V. Subbarao (Ed.), Deccan Flood Basalts. Mem. Geol. Soc. India, no.10, pp.15-22.

Crawford, A.R. (1971) Gondwanaland and the growth of India. Jour. Geol. Soc. India, v.12, pp.205-221.

Dalrymple, R.W. (1979) Wave-induced liquefaction: a modern example from the Bay of Fundy. Sedimentology, v.26, pp.835-844.

Desai, A.G. and Bertrand, H. (1995) The "Panvel Flexure” along the Western Indian continental margin: an extensional fault structure related to Deccan magmatism. Tectonophysics, v.241(1-2), pp.165-178.

Dole, G., Peshwa, V.V. and Kale, V.S. (2000) Evidence of a Palaeoseismic event from the Deccan Plateau Uplands. Jour. Geol. Soc. India, v.56, pp.547-555.

Dole, G., Peshwa, V.V., and Kale, V.S. (2002) Evidences of Neotectonism in Quaternary Sediments from Western Deccan Upland Region, Maharashtra. Mem. Geol. Soc. India, No.49, pp.91-108.

GSI (2002) District Resource Map of Dang District, Gujarat. Geological Survey of India Publication, Kolkata.

Guhman, A.I., Pederson, D.T. (1992) Boiling sand springs, Dismal River, Nebraska: Agents for formation of vertical cylindrical structures and geomorphic change. Geology, v.20, pp.8-10.

Holzer, T.M. and Clark, M.M. (1993) Sand boils without earthquakes. Geology, v.21, pp.873-876.

Jade, S., Shrungeshwara, T. S., Kumar, K., Choudhury, P., Dumka, R.K. and Bhu, H. (2017) India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Scientific Reports 7: 11439, DOI: 10.1038/s41598-017-11697-w.

Jones, M.E. and Preston, R.M.F. (1987) Deformation of Sediments and Sedimentary Rocks: Geol. Soc. London, Spec. Publ., no.29.

Jones, A.P. and Omoto, K. (2000). Towards establishing criteria for identifying trigger mechanisms for soft sediment deformation: a case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan. Sedimentology, v.47(6), pp.1211-1226.

Kale, V.S., Dole, G., Upasani, D. and Pillai, S.P. (2016). Deccan Plateau uplift: insights from parts of Western Uplands, Maharashtra, India. Geol. Soc. London, Spec. Publ., no.445, pp.11-46.

Kaplay, R.D., Kumar, T.V. and Sawant, R. (2013) Field evidence for deformation in Deccan Traps in microseismically active Nanded area, Maharashtra. Curr. Sci., v.105(8), p1051.

Kaplay, R.D., Babar, M.D., Mukherjee, S. and Kumar, T.V. (2016) Morphotectonic expression of geological structures in the eastern part of the South East Deccan Volcanic Province (around Nanded, Maharashtra, India). Geol. Soc. London, Spec. Publ., no.445, pp.317-335.

Kaila, K.L., Murthy, P.R.K., Rao, V.K. and Kharatchko, G.E. (1981) Crustal structure from deep seismic sounding along Koyna II (Kelsi-Loni) profile in the Deccan Trap India. Tectonophysics, v.73, pp.365-384.

Krishnan, M.S. (1982) Geology of India and Burma, 64.

Krishnan, M.S. (1953) The structural and tectonic history of India. Mem. Geol. Surv. India, v.81, pp.137.

Kuenen, Ph. H. (1953) Significant features of graded bedding. AAPG Bull., v.37, pp.1044-1066.

Kuribayashi, E. and Tatsuoka, F. (1975) Brief Review of Soil Liquefaction during Earthquakes in Japan. Soils and Foundations, v.15(4), pp.81-92.

Leeder, M.R. and Alexander, J. (1987) The origin and tectonic significance of asymmetrical meander-belts. Sedimentology, v.34, pp.217-226.

Lowe, D.R. (1975) Water escape structures in coarse-grained sediments. Sedimentology, v.22, pp.157-204.

Mahoney, J.J. (1988) Deccan traps. In: Continental flood basalts. Springer, Dordrecht, pp.151-194.

Marco, S. and Agnon, A. (1995) Prehistoric earthquake deformations near Masada, Dead Sea graben. Geology, v.23(8), pp.695-698.

Mills, P.C. (1983) Genesis and diagnostic value of soft-sediment deformation structures”a review. Sediment. Geol., v.35(2), pp.83-104.

Mohan, G., Surve, G. and Tiwari, P. (2007) Seismic evidences of faulting beneath and Panvel flexure. Curr. Sci., v.93, pp.991-996.

Molina, J.M., Alfaro, P., Moretti, M., Soria, J.M. (1998) Soft-sediment deformation structures induced by cyclic stress of storm waves intempestites (Miocene, Guadalquivir basin, Spain). Terra. Nova v.10, pp.145-150.

Moretti, M. (2000) Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene aeolian deposits (Apulian foreland, southern Italy). Sediment. Geol., v.135, pp.167-179.

Moretti, M., Soria, J., Alfaro, P. and Walsh, N. (2001) Asymmetrical softsediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, southern Spain). Facies, v.44(1), pp.283-294.

Moretti, M. and Sabato, L. (2007) Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin (Southern Italy): seismic shock vs. overloading. Sediment. Geol., v.196(1-4), pp.31-45.

Moretti, M. and Ronchi, A. (2011) Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (Northern Patagonia). Sediment. Geol., v.235, pp.200-209.

Moretti, M., Owen, G. and Tropeano, M. (2011) Soft-sediment deformation induced by sinkhole activity in shallow marine environments: a fossil example in the Apulian Foreland (Southern Italy). Sediment. Geol., v.235, pp.331-342.

Naik, P.K., and Awasthi, A.K. (2003) Neotectonic activities in the Koyna River basin - a synopsis”, Gondwana Geol. Magz. Spec. Publ., no.5, pp.157163.

Obermeier, S.F., Martin, J.R., Franket, A.D., Youd, T.L., Munson, P.J., Munson, C.A. and Pond, E.C. (1993) Liquefaction evidence for or strong Holocene earthquakes in the Wabash Valley of Southern Indiana and Illinois, with a preliminary estimate of magnitude. USGS Prof. Paper-1536, 27p.

Obermeier, S.F. (1996) Use of liquefaction-induced features for paleoseismic analysis - an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engg. Geol., v.44(1-4), pp.1-76.

Owen, G. (1987) Deformation processes in unconsolidated sands. Geol. Soc. London, Spec. Publ., no.29(1), pp.11-24.

Owen, G. (1996) Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology, v.43, pp.279-293.

Owen, G. (2003) Load structures: gravity-driven sediment mobilization in the shallow subsurface. Geol. Soc. London, Spec. Publ., no.216(1), pp.2134.

Potter, P.E., and Pettijohn, F.J. (1963) Paleocurrents and Basin Analysis. Academic Press.

Powar, K.B. (1993) Geomorphological evolution of Konkan Coastal Belt and adjoining Sahyadri Uplands with reference of Quaternary uplift. Curr. Sci.e, v.64(11-12), pp.793-796.

Raj, Rachna, Bhandari, Subhash, Maurya, D.M. and Chamyal, L.S. (2003).

Geomorphic indicators of active tectonics in the Karjan river basin, lower Narmada valley, western India. Jour. Geol. Soc. India, v.62(6), pp.739752.

Rajendran, C.P. (1997) Deformational features in the river bluffs at Ter, Osmanabad district, Maharashtra: evidence for an ancient earthquake. Curr. Sci., v.72(10), pp.750-755.

Rao, B.R. and Rao, P.S. (1984) Historical seismicity of peninsular India. Bull. Seism. Soc. Amer., v.74(6), pp.2519-2533.

Rao, B.R. (2005) Monograph on history of Indian earthquakes from earliest to 2005; http://seisinfoindia.org/seismocity.html.

Rao, D.T., Jambusaria, B.B., Srivastava, S., Srivastava, N.P., Hamid, A., Desai, B.N. and Srivastava, H.N. (1991). Earthquake swarm activity in south Gujarat. Mausam, v.42(1), pp.89-98.

Reeves, C.V., Sahu, B.K. and De Wit, M. (2002) A re-examination of the paleo-position of Africa's eastern neighbours in Gondwana. Jour. African Earth Sci., v.34(3-4), pp.101-108.

Renne, P. R., Sprain, C. J., Richards, M. A., Self, S., Vanderkluysen, L. and Pande, K. (2015). State shift in Deccan volcanism at the CretaceousPaleogene boundary, possibly induced by impact. Science, v.350(6256), pp.76-78.

Rossetti, D.F. (1999) Soft sediment deformation structures in late Albian to Cenomanian deposits, Sao Luis Basin, northern Brazil: Evidence for palaeoseismicity. Sedimentology, v.46, pp.1065-1081.

Rodr1guez-Pascua, M.A., Calvo, J.P., De Vicente, G. and Gómez-Gras, D. (2000) Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sediment. Geol., v.135(1-4), pp.117-135.

Seed, H.B. and Idriss, I.M. (1971) Simplified Procedure for Evaluating Soil Liquefaction Potential. Jour. Soil Mechanics and Foundations Division, v.97, pp.1249-1273.

Seilacher, A. (1969) Fault graded beds interpreted as seismites. Sedimentology v.13, pp.155-159.

Seilacher, A. (1984) Sedimentary structures tentatively attributed to seismic events. Marine Geol., v.55(1-2), pp.1-12.

Sheth, H.C. (1998) A reappraisal of the coastal Panvel flexure, Deccan Traps, as a listric-fault-controlled reverse drag structure. Tectonophysics, v.294, pp.143-149.

Sheth, H.C., Zellmer, G.F., Kshirsagar, P.V. and Cucciniello, C. (2013) Geochemistry of the Palitana flood basalt sequence and the Eastern Saurashtra dykes, Deccan Traps: clues to petrogenesis, dyke-flow relationships, and regional lava stratigraphy. Bull. Volcanol., v.75, pp.701.

Singh, S. and Jain, A.K. (2007) Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya: Geological evidences of paleoseismicity along active fault zone. Sediment. Geol., v.196, pp.47- 57.

Sims, J.D. (1975) Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics, v.29(1-4), pp.141-152.

Storti, F., Vannucchi, P. (2007) Deformation of Soft Sediment in Nature and Laboratory: Sediment. Geol., v.196 (1-4), p. 277.

Tipper, J.C., Sach, V.J. and Heizmann, E.P. (2003) Loading fractures and Liesegang laminae: new sedimentary structures found in the north western North Alpine Foreland Basin (Oligocene-Miocene, south west Germany). Sedimentology, v.50(4), pp.791-813.

Topal, S. and í–zkul, M. (2014) Soft-Sediment Deformation Structures Interpreted as Seismites in the Kolankaya Formation, Denizli Basin (SW Turkey). The Scientific World Journal Volume.

Vanneste, K., Meghraoui, M., Camelbeeck, T. (1999). Late quaternary earthquake-related soft-sediment deformation along the belgian portion of the feldbiss fault, lower rhine graben system. Tectonophysics, v.309, pp.57-79.

Waltham, A.C., Fookes, P.G., (2003) Engineering classification of karst ground conditions. Quarterly Jour. Engg. Geol. Hydrogeol., v.36, pp.101-118.

Watts, A.B. and Cox, K.G. (1989) The Deccan Traps: an interpretation in terms of progressive lithospheric flexure in response to a migrating load. Earth Planet. Sci. Lett., v.93, pp.85-97.

White, R.S., Spence, G.D., Fowler, S.R., Mckenzie, D.P., Westbrook, G.K. and Bowen, A.N. (1987) Magmatism at rifted continental margins. Nature, v.330, pp.439-444.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)