A Statistical Approach to Study the Evolution of Groundwater of Vishwamitri River Basin (VRB), Gujarat

Authors

  • School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar - 382 030, Gujarat
  • School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar - 382 030, Gujarat

DOI:

https://doi.org/10.1007/s12594-020-1468-2

Keywords:

No Keywords.

Abstract

Groundwater is the most vulnerable, exploited natural resource which is a key source of freshwater in the world. Its regular decline in both quality and quantity are an important concern of research. The focus of the present study is to understand the important hydrogeochemical processes involved in the groundwater evolution of Vishwamitri River Basin (VRB), Gujarat, India, using Principal Component Analysis (PCA) technique. To achieve a symmetrical data distribution, log-transformation was applied in this study. This statistical approach decreases the data outlier. A Shapiro-Wilk statistic was employed to test the normal distribution of the data set. The results revealed that ten elements (TDS, bicarbonate, chloride, sulfate, sodium, calcium, magnesium, fluoride, iron and strontium) showed normal distribution. The PCA of 60 groundwater samples using 10 normally distributed chemical parameters indicates that the dominant geochemical process is rock-water interaction through dissolution and cation exchange reactions within the VRB aquifers. This study also reveals that, due to over use of chemical and fertilizers, the sulfate loading is high in groundwater. Therefore, the combined process of natural rock-water interaction, weathering and anthropogenic activities play a significant role in controlling the chemical composition of groundwater of VRB.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2020-05-31

How to Cite

Siddha, S., & Sahu, P. (2020). A Statistical Approach to Study the Evolution of Groundwater of Vishwamitri River Basin (VRB), Gujarat. Journal of Geological Society of India, 95(5), 503–506. https://doi.org/10.1007/s12594-020-1468-2

References

APHA (2012) American Public Health Association Standard methods for the examination of water and waste water. 22nd Edition, American Public Health Association, Washington, DC. 10-175p.

Avtar, R., Kumar, P., Surjan, A., Gupta, L.N., and Roychowdhury, K. (2013) Geochemical processes regulating groundwater chemistry with special reference to nitrate and fluoride enrichment in Chhatarpur area, Madhya Pradesh, India. Environ. Earth Sci., v.70, pp.1699-1708. DOI: 10.1007/ s12665-013-2257-7

Ballukraya, P.N. and Ravi, R. (1999) Characterization of groundwater in the unconfined aquifer of Chennai city, India. Jour. Geol. Soc. India, v.54, pp.1-11.

CGWB (2014) Central Groundwater Board, Groundwater brochure, Gandhinagar district Gujarat. Technical Report, West Central Region, Ahmedabad, Government of India. 10p.

Central Water Commission (2014) Annual Report, Govt. of India. Ministry of Water Resources, River Development and Ganga Rejuvenation. 195p.

Clark, I.D. and Fritz, P. (1997) Environmental isotopes in hydrogeology. Boca Raton, FL, Taylor & Francis. 342 p. DOI:10.1201/9781482242911

EPA (2018) Drinking water standards and health advisory table. U.S. Environmental Protection Agency, Washington, DC. https://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf.

Farhat, S., Bali, M. and Kamel, F. (2019) Geochemical and statistical studies of Mio-Pliocene aquifer's mineralization in Jerba Island, South-eastern Tunisia. Physics and Chemistry of the Earth, v.111, pp.35-52. DOI: 10.1016/j.pce.2019.03.006

Filzmoser, P., Hron, K., and Reimann, C. (2010) The bivariate statistical analysis of environmental (compositional) data. Science of Total Environment, v.408, pp.4230-4238. DOI: 10.1016/j.scitotenv.2010.05.011.

Foppen, J.W.A. (2002) Impact of high-strength wastewater infiltration on groundwater quality and drinking water supply: the case of Sana'a, Yemen. Jour. Hydrol., v.263, pp.198-216. DOI: 10.1016/S0022-1694(02)00051-3

Funes, P.I., Salomon, M.V., Gil, R., Mastrantonio, L., Bottini, R., and Piccoli, P. (2018) Arsenic and trace elements in soil, water, grapevine and onion in Jachal, Argentina. Science of Total Environ., v.615, pp.1485-1498. DOI: 10.1016/j.scitotenv.2017.09.114

Hao, Y., Cao, B., Chen, X., Yin, J., Sun, R. and Yeh, T.C.J. (2012) A piecewise grey system model for study the effects of anthropogenic activities on karst hydrological processes. Water Resources Management, v.27, pp.1207-1220. DOI: 10.1007/s11269-012-0231-x

Hegeu. H. and Kshetrimayum, K.S. (2019) Hydrochemical characterization of groundwater in geomorphic units using graphical and multivariate statistical methods in the Dimapur valley, Northeast India. Groundwater for Sustainable Development, v.8, pp.484-500, DOI: 10.1016/j.gsd.2019.01.004

Hrudey, S.E. and Hrudey, E.J. (2007) Published case studies of waterborne disease outbreaks-evidence of a recurrent threat. Water Environ. Res., v.79, pp.233-245. DOI: 10.2175/106143006x95483.

Khanoranga, and Khalid, S. (2018) An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. Jour. Geochem.Explor., v.197, pp.14-26, DOI: 10.1016/j.gexplo.2018.11.007

Kshetrimayum, K.S. and Heizule, H. (2016) The state of toxicity and cause of elevated Iron and manganese concentrations in surface and groundwater around Naga Thrust of Assam-Arakan basin, Northeastern India. Environ.

Earth Sci., v.75, pp.1-14. DOI:10.1007/s12665-016-5372-4 Kumar, P., Singh, C.K., Saraswat, C., Mishra, B. and Sharma, T. (2017) Evaluation of aqueous geochemistry of fluoride enriched groundwater: a case study of the Patan district, Gujarat, Western India. Water Science, v.31, pp.215-229. DOI: 10.1016/j.wsj.2017.05.002

Kynèlová, P., Hron, K., and Filzmoser, P. (2017) Correlation between compositional parts based on symmetric balances. Mathematical Geosciences, v.49, pp.777-796, DOI: 10.1007/s11004-016-9669-3.

Leduc, C., Pulido-Bosch, A. and Remini, B. (2017) Anthropization of groundwater resources in the mediterranean region: processes and challenges. Hydrogeol. Jour., v.25, pp.1529-1547. DOI: 10.1007/s10040-017-1572-6

Ma, B., Jin, M., Liang, X., and Li, J. (2017) Groundwater mixing and mineralization processes in a mountain-oasis-desert basin, northwest China: hydrogeochemistry and environmental tracer indicators. Hydrogeol.

Jour., v.26, pp.233-250. DOI: 10.1007/s10040-017-1659-0 Meng, Q., Zhang, J., Zhang, Z. and Wu, T. (2016) Geochemistry of dissolved trace elements and heavy metals in the Dan river drainage (China): distribution, sources, and water quality assessment. Environ. Sci. Pollution Res., v.23, pp.8091-8103. DOI: 10.1007/s11356-016-6074-x

Nnorom, I.C., Ewuzie, U. and Eze, S.O. (2019) Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in South-eastern Nigeria. Heliyon, 5, DOI: 10.1016/j.heliyon.2019.e01123

Rakotondrabe, F., Ngoupayou, J.R.N., Mfonka, Z., Rasolomanana, E.H., Abolo, A.J.N. and Ako, A.A. (2018) Water quality assessment in the Betare-Oya gold mining area (East-Cameroon): multivariate statistical analysis approach. Sci. Total Environ., v.610, pp.831-844. DOI: 10.1016/j.scitotenv.2017.08.080

Reimann, C., Filzmoser, P., Hron, K., Kynèlová, P., and Garrett, R.G. (2017) A new method for correlation analysis of compositional (environmental) data - a worked example. Science of the Total Environment, 607-608, 965-971, DOI: 10.1016/j.scitotenv.2017.06.063

Reimann, C., Fabian, K., Flem, B., Schilling, J., Roberts, D. and Englmaier, P. (2016) Pb concentrations and isotope ratios of soil O and C horizons in Nord-Trí¸ndelag, Central Norway: anthropogenic or natural sources? Appld. Geochem., v.74, pp.56-66. DOI: 10.1016/j.apgeochem.2016.09.002.

Reimann, C., Fabian, K., Schilling, J., Roberts, D., and Englmaier, P. (2015a) A strong enrichment of potentially toxic elements (PTEs) in Nord Trí¸ndelag (central Norway) forest soil. Sci. Total Environ., v.536, pp.130- 141. DOI: 10.1016/j.scitotenv.2015.07.032

Reimann, C., and Filzmoser, P. (2000) Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, v.39, pp.1001-1014. DOI: 10.1007/s002549900081

Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., Dinelli, E., and Ladenberger, A., Gemas Project Team, (2012) The concept of compositional data analysis in practise - total major element concentrations in agricultural and grazing land soils of Europe. Sci. Total Environ., v.426, pp.196-210. DOI:10.1016/j.scitotenv.2012.02.032

Reimann, C., Schilling, J., Roberts, D., and Fabian, K., 2015b, A regionalscale geochemical survey of soil O and C horizon samples in Nord-Trí¸ndelag, Central Norway: geology and mineral potential. Appld. Geochem., v.61, pp.192-205. DOI: 10.1016/j.apgeochem.2015.05.019.

Rosen, M., and Jones, S. (1998) Controls on the chemical composition of groundwater from alluvial aquifers in the Wanaka and Wakatipu basins, Central Otago, New Zealand. Hydrogeol. Jour., v.6, 264-281. DOI: 10.1007/s100400050150

Ruiz-Pico, A., Cuenca, A.P., Agila, R.S., Criollo, D.M., Piedra, J.L. and Campos, J.S. (2019) Hydrochemical characterization of groundwater in the Loja Basin (Ecuador). Applied Geochemistry, v.104, pp.1-9, DOI: 10.1016/j.apgeochem.2019.02.008

Sahu, P., Sikdar, P.K. and Chakraborty, S. (2016) Geochemical evolution of groundwater in southern Bengal Basin: The example of Rajarhat and adjoining areas, West Bengal, India. Jour. Earth System Sci., v.125, pp.129-145. DOI: 10.1007/s12040-016-0656-3

Sikdar, P.K., and Chakraborty, S. (2008) Genesis of arsenic in groundwater of North Bengal Plain using PCA: a case study of English Bazar Block, Malda District, West Bengal, India. Hydrological Process, v.22, pp.1796- 1809. DOI: 10.1002/hyp.6742

Simsek, C., Elci, A., Gunduz, O. and Erdogan, B. (2008) Hydrogeological and hydrogeochemical characterization of a karstic mountain region. Environ. Geol., v.54, pp.291-308. DOI: 10.1007/s00254-007-08174

Singh, C.K., and Mukherjee, S., 2014, Aqueous geochemistry of fluoride enriched groundwater in arid part of Western India. Environ. Sci. Pollution Res., v.22, pp.2668-2678. DOI: 10.1007/s11356-014-3504-5

Stevanovic, Z. (2010) Utilization and regulation of springs. In: Kresic, N., Stevanovic, Z., (Eds.), Groundwater hydrology of springs: engineering, theory, management, and sustainability. Butterworth-Heinemann, 388 p.

Trabelsi, R., and Zouari, K. (2019) Coupled geochemical modelling and multivariate statistical analysis approach for the assessment of groundwater quality in irrigated areas: a study from North-Eastern of Tunisia. Groundwater for Sustainable Development, v.8, pp.413-427. DOI: 10.1016/j.gsd.2019.01.006

Trojan, M.D., Maloney, J.S., Stockinger, J.M., Eid, E.P., Lahtinen, M.J. (2003) Effects of land use on ground water quality in the Anoka Sand plain aquifer of Minnesota. Ground Water, v.41, pp.482-492. DOI: 10.1111/j.17456584.2003.tb02382.x

Verma, S., Mohanty, B.P., Singh, K.P., Behera, B.R., and Kumar, A. (2018) Dependence of precipitation of trace elements on pH in standard water. Nuclear Instruments and Methods in Physics Research, Section B, v.420, pp.18-22. DOI: 10.1016/j.nimb.2018.01.016

Zheng. Y, Chen. T, and He. J, 2008, Multivariate geostatistical analysis of heavy metals in top soils from Beijing, China. Jour. Soils and Sediments, v.8, pp.51-58. DOI: 10.1065/jss2007.08.245

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.