New Magnetic Fabric Data from Almora Crystalline Rocks around Rameshwar, Near North Almora Thrust

Authors

  • Department of Geology, Banaras Hindu University, Varanasi - 221 005
  • Dr. K.S. Krishnan Geomagnetic research Laboratory Allahabad - 211 019
  • Department of Geology, Banaras Hindu University, Varanasi - 221 005

DOI:

https://doi.org/10.1007/s12594-020-1563-4

Keywords:

No keywords

Abstract

In this paper, Anisotropy of Magnetic Susceptibility (AMS) data from the rocks of Almora crystalline in the vicinity of Rameshwar is presented. The study integrates field, microstructural and Anisotropy of Magnetic Susceptibility (AMS) studies. Field foliation strike shows NW-SE orientation with moderate to high dip in rocks of Almora Crystalline, whereas near North Almora Thrust rocks of Almora Crystalline are steeply dipping and litho-units are intensely mylonitized due to NE-SW regional compression. The magnetic foliations are recorded to be parallel to the field foliation of the study area. Variation in orientation of magnetic lineation is inferred to imply superposed deformation in the study area. AMS study also reveals that the shape of susceptibility ellipsoid is oblate which is inferred to be due to compression.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-10-01

How to Cite

Katiyar, V., Patil, S. K., & Srivastava, H. B. (2020). New Magnetic Fabric Data from Almora Crystalline Rocks around Rameshwar, Near North Almora Thrust. Journal of Geological Society of India, 96(4), 349–355. https://doi.org/10.1007/s12594-020-1563-4

References

Agarwal., A., Agarwal, K. K., Bali, R., Prakash, C., Joshi, G., (2016) Back thrusting in Lesser Himalaya: Evidencefrom magnetic fabric studies in parts of Almora crystalline zone, Kumaun Lesser Himalaya, Jour. Earth Syst. Sci., v.125, pp.873-884.

Agarwal, K. K., Bali, R., Patil, S. K. and Ali, N. (2010) Anisotropy of magnetic susceptibility in the Almora Crystalline Zone Lesser Himalaya, India: A case study. Jour Asian. Earth Sci., v.3(1) pp.1-10.

Bhattacharya, A.R. (1999) Deformation regimes across the Kumaun Himalaya: A study in strain pattern. Gondwana Res. Mem. (Japan), v.6, pp.81-90.

Bhattacharya, A.R. (2004) Rotation of linear structures in shear regime. Geoinformatics, v.15, pp.1-20.

Borradaile, G.J. (1991) Correlation of Strain With Anisotropy of magnetic Susceptibility (AMS). Pure Appl. Geophys.,v.135, pp.15-29.

Borradaile, G. J. and Jackson, M. (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martin- Hernandez, F., Lüneburg, C. M., Aubourg, C., Jackson, M (Eds.), Magnetic Fabric: Methods and Applications. Geol. Soc. London, v.238, Spec. Publ., pp.299-360.

Célérier, J., Harrison, T.M., Yin, A. and Webb, A.A.G. (2009) The Kumaun and Garwhal Lesser Himalaya, India. Part 1: Structure and stratigraphy. Geol. Soc. Amer. Bull., v.121, pp.1262-1280.

Ferre, E. C., Gebelin A., Till, J. L., Sassier, C., Burmeister, K. C. (2014) Deformation and magnetic fabrics in ductile shear zone: A review. Tectonophysics, v.629, pp.179-188.

Gansser, A. (1964) Geology of the Himalayas. Inter-Section Publishers, London, New York, Sydney, pp.289.

Graham, J.W. (1954) Magnetic susceptibility anisotropy, an unexploited petrofabric element. Bull. Geol. Soc. Amer., v.65, pp.1257-1258.

Heim, A. and Gansser, A. (1939) Central Himalaya: Geological observations of the Swiss expedition 1936. Memoir of the Swiss Society of Natural Science, v.73, pp.245.

Hodges, K.V. (2000) Tectonics of the Himalaya and Southern Tibet from two perspectives. Geol. Soc. Amer. Bull., v.112, pp.324–350.

Hrouda, F. (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., v.5, pp.37-82

Jackson, M.J. and Tauxe L. (1991) Anisotropy of magnetic susceptibility and remanence and susceptibility-developments in the characterization of tectonic, sedimentary and igneous fabric. Rev. Geophys., v.29S, pp.371-6.

Jayangondaperumal, R. and Dubey, A.K. (2001) Superposed folding of blind thrust and formation of klippen: result of anisotropic magnetic susceptibility from the Lesser Himalaya. Jour. Asian Earth Sci., v.19, pp.713-725.

Jelinek, V. (1981) Characterization of the magnetic fabric of rocks. Tectonophysics, v.79, pp.T63-T67.

Joshi, L.M., Pant, P.D. , Kotlia, B.S. , Kothyari G.C., Luirei K. and Singh, A.K. (2016) Structural overview and morphotectonic evolution of a strike-slip fault in the zone of north almora thrust, Central Kumaun Himalaya, India. Jour. Geol. Res., v. 2016, pp.1-16.

Joshi, M. (1999) Evolution of the basal shear zone of the Almora Nappe, Kumaun Himalaya. Mem. Gondwana Res., v. 6, pp.69–80.

Joshi, M. and Tiwari, A.N., (2004) Quartz C-axes and metastable phases in the metamorphic rocks of Almora Nappe: evidence of pre-Himalayan signatures. Curr. Sci., v.87(7), pp.995–999.

Joshi, M. and Tiwari, A. N. (2009) Structure events and metamorphic consequences in Almora Nappe, during Himalayan collision tectonics. Jour. Asian Earth Sci., v.34, pp.326–335.

Katiyar, V. (2014) Geological and Structural studies of Almora Crystalline and Garhwal Group near Rameshwar, District Pithoragarh, with special reference to the North Almora Thrust (Unpublished Ph.D. Thesis), Banaras Hindu University, Varanasi

Kretz, R. (1983) Symbols of rock-forming minerals, Amer. Mineral., v.68, pp.277–279.

Le Fort, P. (1975) Himalaya, the collided range: present knowledge of the continental arc. Amer. Jour. Sci., v.275A, pp.1-44.

LeFort, P., (1996) Evolution of the Himalaya, in Yin, A., and Harrison, T.M., eds., The tectonic evolution of Asia: Cambridge University Press, pp.95– 109.

Mamtani, M. A. and Greiling, R.O. (2005) Granite emplacement and its relation with regional deformation in the Aravalli Mountain Belt, (India) – inferences from the magnetic fabric. Jour. Struct. Geol., v.27, pp.200-829.

Mamtani, M. A. and Sengupta, A. (2010) Significance of AMS analysis in evaluating superposed folds in quartzites. Geol. Magz., v.147, pp.910-918.

Mamtani, M. A. and Vishnu, C., S. (2012) Does AMS data from micaceous quartzite provide information about shape of the strain ellipsoid? Internat. Jour. Earth Sci., v.101,pp.693-703.

Mondal, T.K., (2018) Evolution of fabric in Chitradurga granite (South India)A study based on microstructure, anisotropy of magnetic susceptibility (AMS) and Vorticity analysis, Tectonophysics, v.723, pp.149-161.

Mukherji, A., Chaudhuri, A. K. & Mamtani, M.A. (2004) Regional scale strain variations in the Banded Iron Formations of eastern India: results from anisotropy of magnetic susceptibility studies. Jour. Struct. Geol., v.26, pp. 2175-89.

Nakamura, N. and Nagahama, H. (1997) Anisotropy of magnetic susceptibility and plastic strain of rocks:A Finsler geometrical approach. Acta Geophysica Polonica, v.45, pp.333-54.

Owens, W.H. and Bamford, D. (1976) Magnetic, seismic and other anisotropic properties of rock fabrics. phil. Trans. Royal Soc. London, A283, pp.55-68.

Pant, P.D., Chauhan, R., and Bhakuni, S.S. (2012) Development of Transverse Fault along North Almora Thrust, Kumaun Lesser Himalaya, India: A study Based on Field and Magnetic Fabrics, Jour. Geol. Soc. India, v.79, pp.429-448.

Rochette, P. (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Jour. Struct. Geol., v.9, pp.1015–20.

Sen, K., Dubey, A. K., Tripathi , K., and Pfänder, J. A., (2012) Composite mesoscopic and magnetic fabrics of the Paleo- Proterozoic Wangtu Gneissic Complex, Himachal Himalaya, India : implications for ductile deformation and superposed folding of the Himalayan basement rocks. Jour. Geodynamics, v.61, pp.81-93.

Sen, K., Mukherjee, B.K., Collins, A.S., (2014) Interplay of deformation and magmatism in the 203 Pangong Transpressional Zone, Eastern Ladakh, India: Implications for remobilization of the trans204 Himalayan magmatic arc and initiation of the Karakoram Fault. Jour. Struct. Geol., v.62, pp.13-24.

Srivastava, P. and Mitra, G. (1996) Deformation mechanism and inverted thermal profile in the North Almora Thrust mylonite zone, Kumaon Lesser Himalaya, India; Jour. Struct. Geol., v.18, pp.27-39.

Tarling, D.H. and Hrouda, F. (1993) The magnetic anisotropy of Rocks. Chapman and Hall, London, pp.217.

Tripathi, K., Sen, K. and Dubey, A.K. (2012) Modification of fabric in preHimalayan granitic rocks by post emplacement ductile deformation: insights from microstructures, AMS, and U-Pb geochronology of the Paleozoic Kinnaur Kailash Granite and associated Cenozoic leucogranites of the South Tibetan Detachment Zone, Himachal High Himalaya. Inter. Jour. of Earth Sci, v.101, pp.761-72.

Valdiya, K.S. (1975) Lithology and age of the Tal Formation in Garhwal and implication on stratigraphic scheme of Krol belt in Kumaun Himalaya. Jour. Geol. Soc. India, v.16(2), pp. 119-134.

Valdiya, K.S. (1980) Geology of Kumaun Lesser Himalaya. Wadia Institute of Himalayan Geology.

Valdiya, K.S. (1998) Dynamic Himalaya; University Press.

Zak, J., Verner, K. and Tycova, P. (2008) Multiple magmatic fabrics in plutons: an overlooked tool for exploring interaction between magmatic processes and regional deformation? Geol. Magz., v.145, pp.537-51.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)