Petrogenesis of Neoarchean Mangikhuta Volcanic Complex, Dongargarh Supergroup, Central India: Insights from Relict Clinopyroxene Chemistry

Authors

  • Department of Petroleum Engineering and Earth Sciences, University of Petroleum and Energy Studies, Dehradun– 248 007
  • Department of Applied Geology, IIT ISM, Dhanbad,– 826 004

DOI:

https://doi.org/10.1007/s12594-020-1565-2

Keywords:

No keywords

Abstract

Clinopyroxene relict magmatic phases in Neoarchean Mangikhuta volcanics are described in detail in terms of their geochemistry for the first time, and their petrogenetic insights obtained. EPMA study indicates their restricted compositional range. Elemental variation diagrams show progressive variation of Al, Ca, Si, Fe+3, Ti, Cr, Aly and Aly/Alz, Ti/Al, Fe+2/Fe+3 elemental ratios with fractionation, which establishes their equilibrium conditions during crystallization differentiation. On pyroxene quadrilateral, they plot along fractionation trend of augite. Ca-Al Tschermak, esseneite and Tp are the "other components” in these clinopyroxenes. Progressive variation of other components indicates decrease of pH2O and fO2 of the magma during fractionation. Other components of clinopyroxenes and chondrite normalized whole rock REE patterns indicate minor fractionation of plagioclase in primitive magma. However, plagioclase became a major precipitating phase in later stage of fractionation. Clinopyroxene geobarometer and geothermometer indicate 0-3 kb pressure and 1100-12500 C temperature of crystallization of Mangikhuta clinopyroxenes. Mangikhuta complex have typically high normative orthopyroxene content (35–45 vol. %) now altered to Mg-Al-Fe chlorite. The Mangikhuta magma was highly aqueous and after genesis, it ascended rapidly giving rise to silica-aluminacalc- alkaline series rocks. In the late magmatic history, there was reaction between orthopyroxene and water and plagioclase and water so that Mg(Al,Fe)SiO3 pyroxene converted to Mg(Fe, Al) chlorite and prehnite

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-10-01

How to Cite

Khare, S. K., & Asthana, D. (2020). Petrogenesis of Neoarchean Mangikhuta Volcanic Complex, Dongargarh Supergroup, Central India: Insights from Relict Clinopyroxene Chemistry. Journal of Geological Society of India, 96(4), 363–373. https://doi.org/10.1007/s12594-020-1565-2

References

Asthana, D. (1991) Relict Clinopyroxenes from within plate Metadolerites of the Petroi Metabasalt, the New England Fold Belt, Australia. Min. Magz. v.55(381), pp.549-561.

Asthana, D., Dash, M.R., Pophare, A.M and Khare, S.K., (1996) Interstratified low-high Ti volcanics from arc related Khairagarh Group of Central India. Curr. Sci., v.71, pp.304 -306.

Asthana, D., Sirish K., Vind A K, Zehra F, Kumar H, Pophare A M. (2017) Geochemical í»ngerprinting of <"2.5 Ga fore-arc-arc-back-arc related magmatic suites in the Bastar Craton, central India. Jour. Asian Earth Sci., v.157, pp.218-243.

Balaram V. (1995) Developments and trends in ICP-MS and its influence on recent changes in trace element analyses. Curr. Sci., v.69, pp. 640-649.

Balaram V. (2002) ICP–MS techniques in elemental and isotopic analysis of Lanthanides and Actinides. Jour. Indian Chem. Soc., v.79(6), pp.479-485.

Beccaluva, L., Macciota, G., Piccardo, G. B. and Zeda, O. (1989) Clinopyroxene composition of Ophiolitic basalts as petrogenetic indicator. Chem. Geol., v.77, pp.165-182.

Brown G.M. (1957) Pyroxenes from early and middle stages of fractionation of Skaergaard intrusion, East Greenland. Min. Magz., v.31, pp.511-543.

Basalt Volcanism Study Project (1981) Basalt volcanism in terrestrial planets. 1286p, Pergamon, New York.

Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., Nebel, O. (2018) Geological archive of the onset of plate tectonics. Phil. Trans. Royal. Soc., A 376, 20170405.

Cole, J.W. and Nairon, J.A. (1975) Catalogue of active volcanoes of the world, 22, New Zealand, IAVCEI.

Condie, K.C. and Kroner, A., (2008) When did plate tectonics begin? Evidence from Geologic record. Geol. Soc. Amer. Spec. Paper v.440, pp.1-14.

Cox, K.G., Bell, J.D. and Pankhurst, R.J., (1979) The Interpretation of Igneous Rocks. George Allen and Unwin, London, 452p.

Davies F.J., Grant, R.W.E. and Whitehead, R.E.S. (1979) Immobile trace elements and Archaean volcanic stratigraphy in the Timmins mining area, Ontario. Can. Jour. Earth Sci., v.16, pp.305-311.

Dhuime, B., Wuestefeld, A., Hawkesworth, C.J., (2015) Emergence of modern continental crust about 3 billion years ago. Nature Geosci. v.8, pp. 552555.

Dhuime B, Hawkesworth C J, Delavault H, Cawood P A., (2018) Rates of generation and destruction of the continental crust: implications for continental growth. Phil.Trans.R.Soc.A376:20170403. http://dx.doi.org/ 10.1098/rsta.2017.0403

Gaetani G A, Grove, T.L. and Bryan, W. B., (1993) The influence of water on the petrogenesis of subduction related igneous rocks. Nature, v.365, pp. 332-334.

Gaetani G A, Grove T L, Bryan W B, (1994) Experimental phase relations of basaltic andesite from the hole 839B under hydrous and anhydrous conditions. Proc. ODP, Leg 135, pp.557-564.

Gibb, F G F., (1973) The zoned Clinopyroxenes of the Shiant Isles sill, Scotland. J. Petrol., v.14, pp. 203-230.

Govil, P.K., (1985) X-ray fluorescence analysis of major, minor and selected trace elements in new IWG reference rock samples. Jour. Geol. Soc. India, v. 26, pp. 38-42.

Gupta, A. K. (2007) Petrology of Igneous Rocks. p. 469, Narosa Pub. New Delhi.

Gupta, A.K., Onuma, K., Yagi, K., Lidiak, E.G. (1973) Effect of silica concentration on the solubility of Titanium in clinopyroxene in the system Diopside – CaTiAl2O6 – SiO2. Contrib. Min. Petrol. v.41,4, pp.333-344.

Hastie A. R, Kerr A C, McDonald I, Mitchell S F, Pearce J A, Wolstencroft and Millar I., (2010) Do Cenozoic Analogues support a plate tectonic origin of Earth's earliest continental crust. Geology v. 38, 6, pp. 495-498.

Hawkesworth C J, Gallagher K., Hergt. J M and McDermott, F., (1994) Destructive plate margin magmatism, Geochemistry and melt generation. Lithos, v. 33, pp.169-188.

Hawkesworth C J and Brown M., (2018) Earth dynamics and the development of plate tectonics. Phil.Trans.R.Soc.A376: 20180228.

Inoue, A., Inoue, S. and Utada, M., (2018) Application of chlorite thermometry to estimation of formation of temperature and redox conditions. Clay Minerals, v. 53, 2, pp.143-158.

Jafri S. H., Shailja V., Ramesh S. L., (2007) Occurrence of quench plagioclase and pyroxene crystals in Sitagota Mafic volcanics of the Dongargarh Super group, Central India. Jour. Geol. Soc. Ind. v. 70, 5, pp.787-792.

Keleman P. B., (1995) Genesis of high Mg # Andesites and the continental crust. Contrib. Min. Petrol. v.120, 1, pp.1-19.

Kersting, A.B. and Arculus, R.J., (1994) Klyuchevskoy Volcano, Kamchatka, Russia: The Role of High-Flux Recharged, Tapped, and Fractionated Magma Chamber(s) in the Genesis of High-Al2O3 from High-MgO Basalt. J Petrol. v. 35, pp.1 – 41.

Khanna, T.C. Bizimis, M., Barbeau, Krishna, A.K., Sesha Sai, V.V. (2019) Evolution of ca.2.5 Ga Dongargarh volcano-sedimentary Supergroup, Bastar craton, Central India: Constraints from zircon U-Pb geochronology, bulk rock geochemistry and Hf - Nd isotope systematics. Earth Sci. Rev., v.190, pp. 273-309.

Kuno, H. (1968) Lateral variation of basalt magma type across continental margin and island arcs. Bul. Vol. Series 2, v.29, pp.195-222.

Kushiro, I., (1969) Clinopyroxene solid solution formed by reactions between Diopside and plagioclase at high pressure. Min. Soc. Am. Spl. Paper, v.2, pp.179-191.

Kushiro, I., (1969) The system forsterite – diopside – SiO2 with or without water at high pressures. Am. J. Sci., (Schairer vol.) 267,4, pp.269-294.

Leterrier, J., Maury, R. C., Thonon, P., Girard, D. and Marchal, M., (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet. Sci. Lett., v.59, pp. 139-154.

Lindsley, D. H (1983) Pyroxene Thermometry. Am. Min. v. 68, pp. 477-493.

Longjam, K.C., Ahmad, T., (2012) Geochemical characterization and Petrogenesis of Proterozoic Khairagarh volcanics: implication for Precambrian crustal evolution. Geol. Jour., v.47, pp.130-143.

Loucks, R.R. (1990) Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Ti/Al ratio in clinopyroxene. Geology, v.18, pp.346-349.

Manikyamba, C., Santosh, M., Chandan Kumar, B., Rambabu, S., Li Tang, Saha, A., Arubam, C. Khelena, Ganguly, S., Singh, D., Subba Rao, D.V. (2016) Zircon U-Pb geochronology, Lu-Hf isotope systematics, and geochemistry of bimodal volcanic rocks and associated granitoids from Kotri Belt, Central India: Implications for Neoarchean–Neoarchean crustal growth. Gondwana Res. v.38, pp.313-333.

McDonough, W.F. and Sun, S.S., (1995) The Composition of the Earth; Chemical Geol., v.120, pp.223-253.

Miyashiro A. (1974) Volcanic rock series in island arc and active continental margins. Amer. Jour. Sci., v.274, pp.321-355.

Morimoto, N., Fabries, J., Ferguson, A.K., Ginzberg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K., Gottardi, G., (1988) Nomenclature of Pyroxenes. Mineral. Magz., v.52, pp.535-550.

Neogi, S., Miura, H. and Hariya, Y. (1996) Geochemistry of Dongargarh volcanic rocks, Central India: Implications for the Precambrian mantle. Precambrian Res., v.76, pp.77-91.

Nimis P. (1995) A Clinopyroxene geobarometer for basaltic systems based on crystal structure modelling. Contrib. Mineral. Petrol., v.121, pp.115-125.

Onuma, K. (1983) Effect of oxygen fugacity of fassaitic pyroxenes. Jour. Fac. Sci., Hokkaido Univ., Ser., IV, v.20, pp.185-194.

Patel S.C., Asthana D., Acharya C.S. (2008) Prehnite and Pumpelleyite in the Archaean Sitagota Volcanics near Deori, Bhandara District, Maharashtra. Jour. Geol. Soc. India, v.72(2), pp.208-212.

Pearce, J.A. (1982) Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R.S. (Ed.), Andesites: Orogenic Andesites and Related Rocks, John Wiley and Sons, pp.252-548.

Pearce J. A., (1996) User guide to Basalt discriminant diagram. In Wyman D.A. Trace element geochemistry of volcanic rocks, Applications for massive sulphide exploration. Geol. Assoc. Canada. v.12, pp.79-113.

Pearce J.A. (2014) Geochemical Fingerprinting of the Earth's Oldest Rocks. Geology, v.42; pp.175-176.

Pearce, J.A. and Cann, J.R. (1973) Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. EPSL, v.19, pp.290-300.

Pearce, J.A. and Peate D.W. (1995) Tectonic implications of composition of volcanic arc magmas. Ann. Rev. Earth Planet. Sci., v.23, pp.251-285.

Pearce J.A. and Stern J.S. (2006) Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. Amer. Geophys. Union, Geophysical Monograph Series, v.166, pp.63-86.

Putirka, K.D., Mikaelian, H., Ryerson, F., and Shaw, H. (2003) New clinopyroxeneliquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with application to lavas from Tibet and the Snake River Plain, Idaho. American Mineral., v.88, pp.1542-1554.

Sarkar, S.N., (1957) Stratigraphy and tectonics of Dongargarh System: A new system in the Precambrian of Bhandara - Durg Balaghat area, Bombay and M.P. Indian Inst. Tech. Jour. Sci. Eng. Res., v.1, pp.237-268.

Sarkar S.N., Sarkar S.S., Ray S.L. (1994) Geochemistry and genesis of the Dongargarh Supergroup Precambrian rocks in Bhandara - Durg Region, Central India. Indian Jour. Earth Sci., v.21, pp.117-126.

Satyanarayanan M., Balaram V., Sawant S., Subramanyam K. S. V., Krishna G. V., Dasaram B., Manikyamba C., (2018) Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry. Atomic Spectrometry – Norwalk Connecticut, v.39, 1, pp.1-15.

Schweitzer, E.L., Papike J.J., Bence A.E. (1979) Statistical analysis of Clinopyroxenes from deep sea basalt. Amer. Mineral. v.64, pp.501-513.

Sensarma, S. and Mukhopadhyay, D. (2014) Stratigraphy of ~2.5 Ga Dongargarh Belt, Central India: Key Observations and Suggested Revisions. Gondwana Geol. Magz. Spec., v.16, pp.41-48.

Sensarma, S. and Palme, H. (2013) Silicate liquid immiscibility in the ~2.5 Ga Fe-rich andesite at the top of the Dongargarh large igneous province (India). Lithos, v.170, pp.239-251.

Sisson and Grove, (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol., v.113, pp.143-166.

Thompson, R.N. (1974) Some high-pressure pyroxenes. Mineral. Magz., v.39, pp.768-787.

Tilley, C.E., Yoder, H.S. and Schairer, J.F. (1967) Melting relation of igneous rock series. Carnegie Inst. Wash. Yb., v.66, pp.450-457.

Tormey, D.R., Grove, T.L. and Bryan, W.B. (1987) Experimental petrology of normal MORB near the Kame Fracture zone: 22-25 N, Mid Atlantic Ridge. Contrib. Mineral. Petrol., v.86, pp.121-139.

Wilcox, R.E. (1956) Petrology of Paricutin volcanic complex, Mexico. US Geol. Surv. Bull. v.965, C, pp.281-353.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.