Garnet-Hornblende Geothermometer: A Comparative Study

Authors

  • Department of Applied Geology, School of Engineering & Technology, Dr Harisingh Gour Vishwavidyalaya, Sagar - 470 003
  • Department of Applied Geology, School of Engineering & Technology, Dr Harisingh Gour Vishwavidyalaya, Sagar - 470 003

DOI:

https://doi.org/10.1007/s12594-020-1607-9

Keywords:

No Keywords.

Abstract

The abundance of garnet - hornblende pair in a wide range of rocks primarily from upper green schist to granulite facies has made it one of the most widely used pairs for estimation of temperature at which once rocks equilibrated. Several models of garnet- hornblende thermometer have been formulated by a number of researchers in last four decades. In this contribution, four thermometers: Graham & Powell (1984); Perchuk et al., (1985); Powell, (1985) and Ravna, (2000) formulated since 1984 have been applied. 79 sample data (32 granulites facies, 37 amphibolite facies, 1 greenschist facies, 6 UHP/eclogite facies, 1 UHT and 2 migmatites) from the global literature were collected and processed through the "Gt-Hbl.EXE” software. Based on the present study, the best among all the four models have been identified where the regression bearing on inverse of temperature verses LnKD of each model as well as relation of distribution coefficient on composition were compared. It is concluded that Perchuk et al., (1985) is the most valid and reliable thermometers for a wide range of rock types such as greenschist to eclogite facies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-12-31

How to Cite

Thomas, H., & Rana, H. (2020). Garnet-Hornblende Geothermometer: A Comparative Study. Journal of Geological Society of India, 96(6), 591–596. https://doi.org/10.1007/s12594-020-1607-9

References

Allen, J.C., Boettcher, A.L. and Marland, G. (1975). Amphiboles in andesite and basalt: I. Stability as a function of P-T-fO,. Amer. Min., v.60, pp.10691085.

Allen, J.C. and Boettcher, A.L. (1978) Amphiboles in andesite and basalt: 11. Stability as a function of P-T-fH2O,. Amer. Min., v.63, pp.1074-1087.

Allen, J.C. and Boettcher, A.L. (1983) The stability of amphibole in andesite and basalt at high pressures. Amer. Min., v.68, pp.307-314.

Bohlen, S.R. (1987) Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Jour. Geol., v.95(5), pp.617-632.

Carroll, M.R. and Wyllie, P.J. (1989) Experimental phase relations in the system tonalite-peridotite-H2Oat 15 kb; implications for assimilation and differentiation processes near the crust-mantle boundary. Jour. Petrol., v.30(6), pp.1351-1382.

Dale, J., Holland, T. and Powell, R. (2000). Hornblende–garnet–plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contrib. Mineral. Petrol., v.140(3), pp.353-362.

Dobretsov, N.L., Sobolev, V.S., Sobolev, N.V. and Khlestov, V.V. (1975) The facies series of regional metamorphism at high pressures In: Sobolev, V.S. (Ed. ), Australian National University, Dept of Geol. Publ. 266, Canberra.

Elmer, F.L., White, R.W. and Powell, R. (2006) Devolatilization of metabasic rocks during greenschist–amphibolite facies metamorphism. Jour Metamorp. Geol., v.24(6), pp.497-513.

Ellis, D.J. and Green, D.H. (1979) An experimental study of the effect of Ca upon garnet clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol., v.71, pp.13-22.

Ernst, W.G. and Liu, J. (1998) Experimental phase-equilibrium study of Aland Ti-contents of calcic amphibole in MORB; a semiquantitative thermobarometer. Amer. Mineral., v.83(9-10), pp.952-969.

Essene, E.J., Hensen, B.J. and Green, D.H. (1970) Experimental study of amphibolite and eclogite stability. Phys. Earth Planet. Interiors, v.3, pp.378-384.

Ferry, J.T. and Spear, F.S. (1978). Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib. Mineral. Petrol., v.66(2), pp.113-117.

Frost, M.J. (1962) Metamorphic grade and iron-magnesium distribution between co-existing garnet-biotite and garnet-hornblende. Geol. Magz., v.99(5), pp.427-438.

Ghent, E.D. and Stout, M.Z. (1986) Garnet-Hornblende Thermometry, Activity, and the Minimum Pressure Limits of Metamorphism for Garnet Amphibolites. Jour. Geol., v.94(5), pp.736-743.

Graham, C.M. and Powell, R. (1984) A garnet–hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California. Jour. Metamorp. Geol., v.2(1), pp.13-31.

Green, D.H. and Ringwood, A.E. (1967) An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geoch. Et Cosmo Acta, v.31(5), pp.767-833.

Green, T.H. (1972) Crystallization of calc-alkaline andesite under controlled high-pressure hydrous conditions. Contrib. Mineral. Petrol., v.34(2), pp.150-166.

Harley, S.L. (1989) The origins of granulites: a metamorphic perspective. Geol. Magz., v.126(3), pp.215-247.

Hokada, T. (2001) Feldspar thermometry in ultrahigh-temperature metamorphic rocks: Evidence of crustal metamorphism attaining∼1100°C in the Archean Napier Complex, East Antarctica. Amer. Mineral., v.86(7-8), pp.932-938.

Kaneko, Y. and Miyano, T. (2004) Recalibration of mutually consistent garnet– biotite and garnet–cordierite geothermometers. Lithos, v.73(3-4), pp.255-269.

Klemd, R. and Bröcker, M. (1999) Fluid influence on mineral reactions in ultrahigh-pressure granulites: a case study in the OEnie¿nik Mts. (West Sudetes, Poland). Contrib. Miner. Petrol, v.136(4), pp.358-373.

Leake, B.E., Woolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M. C., Grice, J.D., .and Linthout, K. (1997) Report. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. Mineralogical Magz., v.61(2), pp.295-321.

Patiño douce, A.E. and Beard, J.S. (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Jour Petrol., v.36(3), pp.707-738.

Perchuk, L.L. (1966) The temperature dependence of the Ca distribution coefficient for co-existing amphi-boles and plagioclases. Dokl. Akad. Nauk SSSR, v.169. pp.1436-1438 (in Russian).

Perchuk, L.L. (1967) The analysis of thermodynamic conditions of mineral equilibria in the amphibole-garnet rocks. fx. Akad. Nauk SSSR, ser. Geol., pp.57-83 (in Russian).

Perchuk. L.L. (1969) The effect of temperature and pressure on the equilibrium of natural iron-magnesium minerals. Inr. Geol. Rev., v.11, pp.875-901.

Perchuk, L.L. (1970) Equilibria OJ Rock-Forming Minerals, 301 ‘Nauka' Press, Moscow (in Russian).

Perchuk, L.L., Aranovich, L.Y., Podlesskii, K.K., Lavrant'eva, I.V., Gerasimov, V.Y., Fed'Kin, V.V. and Berdnikov, N.V. (1985) Precambrian granulites of the Aldan shield, eastern Siberia, USSR. Jour. Metamorp. Geol., v.3(3), pp.265-310.

Perchuk, L.L. and Lavrent'yeva, I.V. (1990) Garnet-orthopyroxene and garnetamphibole geothermobarometry: Experimental data and thermodynamics. Internat. Geol. Rev., v.32(5), pp.486-507.

Powell, R. (1985) Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet clinopyroxene geothermometer revisited. Jour. Metamorp. Geol., v.3(3), pp.231-243.

Ravna, E.K. (2000) Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet–hornblende Fe–Mg geothermometer. Lithos, v.53(3-4), pp.265-277.

Sen, C. and Dunn, T. (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin ofadakites. Contrib. Mineral. Petrol., v.117(4), pp.394-409.

Skjerlie, K.P. and Johnston, A.D. (1996) Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: implications for anatexis in the deep to very deep continental crust and active continental margins. Jour. Petrol., v.37(3), pp.661-691.

Springer, W. and Seck, H.A. (1997) Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contrib. Mineral. Petrol., v.127(1-2), pp.30-45.

Thomas, H. (1994) Announcement” Software "MPET” for calculation of P-T and activities of common metamorphic minerals based on different models published in recent years. Jour. Geol. Soc. India, v.44, pp.34.

Thomas, H., Rana, H. and Shahid, M. (2018) Garnet-orthopyroxene (GOPX) geothermometer: a comparative study. Arabian Jour. Geosci., v.11(24), pp.771-780. DOI: 10.1007/s12517-018-4060-y

Thomas, H. and Rana, H. (2019) Valid garnet - biotite thermometer: A comparative study. Jour. Nepal Geol. Soc., v.58, pp.61-68. DOI: 10.3126/ jngs.v58i0.24574

Thomas, H., Rana, H. and Anju, Mishra. (2020) Applicability of garnet cordierite (GCRD) Geothermometer. Jour. Nepal Geol. Soc., v.60, pp.147161. DOI:10.3/26/jngs.v60i0.31271.

Turner F.J. and Hill M. (1968) Metamorphic petrology, New York: McGraw Hill, pp.265-270

Wells, P.R.A. (1979) P-T conditions in the Moines of the Central Highlands, Scotland: Jour. Geol. Soc. London, v.136, pp.663-671

Winter, J.D. (2013) Principles of igneous and metamorphic petrology. Pearson Education, pp.375-378.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.