Volcano Sedimentary Origin of Archaean Banded Iron Formation of Nellore Schist Belt from Chundi-Malakonda-Ayyavaripalle Area, Prakasam District, Andhra Pradesh and its Petro-chemical Characterization

Authors

  • Geological Survey of India, SU: Andhra Pradesh, Southern Region, Hyderabad - 500 068
  • Geological Survey of India, SU: Andhra Pradesh, Southern Region, Hyderabad - 500 068
  • Geological Survey of India, SU: Andhra Pradesh, Southern Region, Hyderabad - 500 068

DOI:

https://doi.org/10.1007/s12594-021-1712-4

Keywords:

No keywords.

Abstract

Banded iron formations (BIFs) are the most significant source of iron in the world. The present study addresses the petrographic and geochemical characterization of the BIF from Chundi-Malakonda-Ayyavaripalle area in the Nellore schist belt of Prakasam district, Andhra Pradesh, their genesis and iron enrichment processes. Six bands of banded magnetite quartzite (BMQ) of Archaean age occur in the area. Field investigations and petrography revealed that the studied BIF samples are hard, compact, weathered and composed of alternate layers of magnetite/martite and subordinate quartz, biotite and muscovite. The BIFs occur in three associations: volcanic (Band 1,3,4,5), sedimentary (Band 6) and volcano-sedimentary (Band 2).

The geochemical composition of the whole rock reveals that iron and silica represent 78.48% to 91.74% of the average composition. The total iron (TFe) contents range from 16.25 to 61.80 wt % (average of 38.47 wt %) and is consistent with lowgrade siliceous BIF by global standards. All BIFs have high SiO2/Al2O3, Fe/Ti, and low Al/(Al+Fe+Mn), which suggest a mixed hydrogenous and hydrothermal origins. Geochemical results for the BIFs lead to the conclusion that all the BIFs are of Algoma-type with Precambrian affinity and formed in small sloped or terraced silled basins in the back-arc areas with MORB affinity, surrounding an immature island arc. Depending on the degree of replacement and shape of the magnetite crystals, two textural types of magnetite (Magnetite-I and Magnetite-II) are observed. Ore formation occurs in three stages: Magnetite (protore), Martites and Martite-goethites.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2021-05-13

How to Cite

Kar, E., Mishra, S., & Ghosh, P. (2021). Volcano Sedimentary Origin of Archaean Banded Iron Formation of Nellore Schist Belt from Chundi-Malakonda-Ayyavaripalle Area, Prakasam District, Andhra Pradesh and its Petro-chemical Characterization. Journal of Geological Society of India, 97(5), 457–469. https://doi.org/10.1007/s12594-021-1712-4

References

Angerer, T., Hagemann, S.G., and Danyushevsky, L.V. (2012) Geochemical Evolution of the Banded Iron Formation-Hosted High-Grade Iron Ore Fig.14. Stages of ore formation (after Bekker et al., 2010) System in the Koolyanobbing Greenstone Belt, Western Australia. Inc. Econ. Geol., v.107, pp.599–644.

Bach, P., Smith, I.E. and Maplas, J.G. (2012) The Origin of Garnets in Andesitic Rocks from the Northland Arc, New Zealand, and their Implication for Sub-arc Processes. Jour. Petrol., v.53(6), pp.1169-1195.

Baioumy, H.M., Ahmed, A.H. and Khedr, M.Z. (2014) A mixed hydrogeneous and hydrothermal origin of the Bahariya iron ores, Egypt: Evidences from the trace and rare earth elements geochemistry. Jour. Geochem. Explor. doi: 10.1016/j.gexplo.2014.08.008.

Barrett, T.J. (1981) Chemistry and mineralogy of Jurassic bedded chert overlying ophiolites in the North Appenines, Italy. Chem. Geol., v.34, pp.289–317.

Barrett, T. J., Fralick, P.W., and Jarvis, I. (1988a) Rare-earth-element geochemistry of some Archaean iron formations north of Lake Superior, Ontario. Canadian Jour. Earth Sci., v.25, pp.570-580.

Bekker, A., Slack, J.F., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, K.O. and Rouxel, O.J. (2010) Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol., v.105, pp. 467–508.

Belevtsev, Y.N., Belevtsev, R.Y. and Siroshtan, R.I. (1983) Chapter 5: The Krivoy Rog Basin. In: Trendall, A.F., and Morris, R.C. (Eds.), Iron formation: Facts and Problems. Elsevier, Amsterdam, v.6, pp.211– 252, DOI: 10.1016/S0166-2635(08)70044-6.

Beukes, N.J. (2008) Genesis of High-Grade Iron Ores of the Archean Iron Ore Group around Noamundi, India. Inc. Econ. Geol., v.103, pp.365–386.

Bonatti, E. (1975) Metallogenesis at oceanic spreading centers. Ann. Rev. Earth Planet. Sci., v.3, pp.401–433.

Bostrom, K. (1973) The origin and fate of ferromanganoan active ridge sediments. Stockholm Contrib. Geol., v.27, pp.149–243.

Clout, J.M.F. and Simonson, B.M. (2005) Precambrian iron formations and iron formations-hosted iron ore de posits. Econ. Geol., v.100, pp.643- 679.

De la Roche, H., Leterrier, J., Grandclaude, P. and Marchal, M. (1980) A Classification of Volcanic and Plutonic Rocks Using R1-R2 Diagrams and Major Element Analyses—Its Relationships with Current Nomenclature. Chem. Geol., v.29, pp.183-210. DOI: 10.1016/0009- 2541(80)90020-0

El-Shazly, A.K., Khalil, K.I. and Helba, H.A. (2019) Geochemistry of Banded Iron Formations and their host rocks from the Central Eastern Desert of Egypt: A working genetic model and tectonic implications. Precambrian Res., v.325, pp.192-216.

Ganno, S., Tsozue, D., Nono, G.D.K., Tchouatcha, M.S., Ngnotue, T., Takam, R. G. and Nzenti, J. P. (2018) Geochemical Constraints on the Origin of Banded Iron Formation-Hosted Iron Ore from the Archaean Ntem Complex (Congo Craton) in the Meyomessi Area, Southern Cameroon. Resource Geol.,v. 68(3), pp. 287–302.

Goodwin, A. M. (1973) Archean volcanogenic iron-formation of the Canadian shield. In: Genesis of Precambrian iron and manganese deposits. Proceedings of Kiev Symposium, 1970. Earth Sciences, v.9, pp.23-34.

Goswami, S., Dey, S., Zakaulla, S. and Verma, M.B. (2019) Active rifting and bimodal volcanism in Proterozoic Papaghni sub-basin, Cuddapah basin (Andhra Pradesh), India. Jour. Earth Syst. Sci., v.129(21), DOI: 10.1007/ s12040-019-1278-3.

Govett, G.J.S. (1966) Origin of banded iron-formation. Geol. Soc. Amer. Bull., v.77, pp.1191-1212.

Gradim, C., Roncato, J., Pedrosa-Soares, A.C., Jacobsohn, T., Dussin, I., Alkmim, F.F., Queiroga, G., Carlos da Silva, L. and Babinski, M. (2014) The hot back-arc zone of the Araçuaí orogen, Eastern Brazil: from sedimentation to granite generation. Brazilian Jour. Geology, v.44(1), pp.155-180.

Gross, G.A. (1980) A classification of iron formations based on depositional environments. Canadian Mineral., v.18, pp.215–222.

Hamade, T., Konhauser, K.O., Raiswell, R., Goldsmith, S. and Morris, R.C. (2003) Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations. Geology, v.31(1), pp.35-38.

Heimann, A., Johnson, C.M., Beard, B.L., Valley, J.W., Roden, E.E., Spicuzza, M.J. and Beukes, N.J. (2010) Fe, C and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in 2.5 Ga marine environments. Earth Planet. Sci., v.294(1-2), pp.8-18.

Ilouga, D.C.I., Suh, C.E. and Ghogomu R.T. (2013) Textures and rare earth elements composition of banded iron formations (BIF) at Njweng prospect, Mbalam Iron Ore District, Southern Cameroon. Internat. Jour. Geol., v.4, pp.146-165.

Isley, A.E. (1995) Hydrothermal plumes and the delivery of iron to banded iron formation. Jour. Geol, v.103, pp.169-185.

Kappler, A., Pasquero, C., Konhauser, K. O. and Newman, D.K. (2005) Deposition of Banded Iron Formations by Anoxygenic Phototrophic Fe(II)- Oxidizing Bacteria. Geology, v.33(11), pp.865-868.

Khalil, K. I. and El-Shazly, A. K. (2012) Petrological and Geochemical Characteristics of Egyptian Banded Iron Formations: 1 Review and New Data from WadiKareim. Geochemistry Exploration Environment Analysis, v.12(2), pp.105-126.

Krishnappa, T., and Katti, P.M. (1992-93) Report on the Geology of the area between Sitarampuram and Kandukur in parts of Nellore Schist Belt, Andhra Pradesh. Progress Report for the Field Season 1992-93.

Lascelles, D.F. (2006) The Mount Gibson Banded Iron Formation-Hosted Magnetite Deposit: Two Distinct Processes for the Origin of High-Grade Iron Ore. Econ. Geol., v.101, pp.651–666.

Le Bas, M. J. L., Le Maitre, R. W. L., Streckeisen, A. & Zanettin, B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Jour. Petrol., v.27, pp.745–750.

Lentz, D.R. (1997) The phosphorus-enriched, S-type Middle River rhyolite, Tetagouche Group, Northeastern New Brunswick. Canadian Mineral., v.35, pp.673-690.

Lepp, H. and Goldich, S. S. (1964) Origin of the Precambrian iron-formation. Econ. Geol., v.69, pp.1025-1060.

Luo, B., Zhang, H., Xu, He Yang, W., Zhao, J., Guo, L., Zhang, L., Tao, L., Pan, F. and Gao, Z. (2018) The Magmatic Plumbing System for Mesozoic High-Mg Andesites, Garnet-bearing Dacites and Porphyries, Rhyolites and Leucogranites from West Qinling, Central China. Jour. Petrol., v.59(3), pp.447–482.

Middlemost, E.A.K. (1994) Naming Materials in the Magma/Igneous Rock System. Earth Sci. Rev., v.37, pp.215-224.

Mirnejad, H., Blourian, G. H., Kheirkhah, M., Akrami, M. A. and Tutti, F. (2008) Garnet-bearing rhyolite from Deh-Salm area, Lut block, Eastern Iran: anatexis of deep crustal rocks. Miner. Petrol, v.94, pp.259– 269.

Morris, R.C. and Kneeshaw, M. (2011) Genesis modelling for the Hamersley BIF-hosted iron ores of Western Australia: a critical review.Australian. Jour. Earth Sci., v.58, pp.417-451.

Richard, W. M. (1994) Chemical criteria to identify the depositional environment of chert: general principles and applications. Sediment. Geol., v.90, pp.213–232.

Roy, S. and Venkatesh, A.S. (2009) Mineralogy and geochemistry of banded iron formation and iron ores from eastern India with implications on their genesis. Jour. Earth Syst. Sci., v.118(6), pp.619–641.

Saha, D., Sain, A., Nandy, P., Mazumder, R. and Kar, R. (2015) Tectonostratigrpahic evolution of the Nellore schist belt, since the Neoarchaean. In: Mazumder, R. and Erikssoon, P.G. (Eds.), Precambrian Basins of India: Stratigraphic and Tectonic Context. Geol. Soc. London Mem., v.43, pp.269-282.

Sieck, P., Wemmer, K., López-Doncel, R., Dávila-Harris, P., Aguillón-Robles, A., Maury, R.C. (2019) Almandine garnet-bearing rhyolites associated to bimodal volcanism in the Mesa Central of Mexico: Geochemical, petrological and geochronological evolution. Jour. South Amer. Earth Sci., v.92, pp.310–328.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.