Archean Biogeochemical Cognizance from Dharwar Craton, India - A Review

Authors

  • National Geophysical Research Institute, Uppal Road, Hyderabad - 500 007
  • National Geophysical Research Institute, Uppal Road, Hyderabad - 500 007
  • National Institute of Oceanography, Goa - 403 004
  • National Geophysical Research Institute, Uppal Road, Hyderabad - 500 00

DOI:

https://doi.org/10.1007/s12594-022-1931-3

Keywords:

No Keywords

Abstract

The Banded iron formations (BIFs) and manganese formations of Chitradurga, Shimoga and Sandur greenstone belts of Dharwar craton, associated with the stromatolitic carbonates, carbonaceous phyllites and shales along with gold mineralization, are best geological entities to evaluate the Archean biogeochemical processes and transformation of a habitable Earth. The geochemical anomalies along with C, O and S isotopic signatures of stromatolitic carbonates, carbonaceous phyllites and sulphidic BIFs reflect on biogenic signatures, fluctuating Archean ocean temperatures from 25-75°C and anoxic to euxinic redox conditions. The U-Pb detrital zircon ages of these stromatolitic carbonates indicate 3.5 to 2.6 Ga whereas the carbonaceous shales indicate 3.2 – 2.2 Ga reflecting the transportation of organic matter to the ocean basin during the growth of stromatolitic carbonates. The gold content of carbonaceous phyllites and sulphidic BIFs indicates hydrothermal source. The O2 produced due to stromatolitic activity has deposited Mn and Fe of the Archean oceans as BIFs and Mn formations. The biogenic matter of the stromatolites along with other siliciclastic material, gold and sulphides derived from the volcanic activity mixed and formed as carbonaceous shales in the ocean basin under euxinic conditions. The comprehensive geological, geochemical including isotopic studies on these rock types collectively indicate the interaction of lithosphere-hydrosphereatmosphere- biosphere in the Archean oceans which paved the way for the advanced forms of life.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Original Articles

Published

2022-01-31

How to Cite

Manikyamba, C., Sindhuja, C. S., Khelen, A. C., & Pahari, A. (2022). Archean Biogeochemical Cognizance from Dharwar Craton, India - A Review. Journal of Geological Society of India, 98(1), 74–78. https://doi.org/10.1007/s12594-022-1931-3

References

Allen, J.F., and Martin, W. (2007). Out of thin air. Nature, v. 445, pp. 610- 612.

Arp, G., Reimer, A., and Reitner, J. (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, v. 292, pp. 1701-1704.

Bekker, A., Holland, H.D., Wang, P.-L., Rumble, D., III, Stein, H.J., Hannah, J.L., Coetzee, L.L., and Beukes, N.J. (2004) Dating the rise of atmospheric oxygen: Nature, 427, 117–120.

Campbell, A.C., Gieskes, J.M., Lupton, J.E., and Lonsdale, P.F. (1988) Manganese geochemistry in the Guayma basin, Gulf of California. Geochim. Cosmochim. Acta, v. 52, pp. 345-357.

Catling, D.C., and Zahnle, K.J. (2020) The Archean atmosphere. Sci. Adv. 6, eaax1420. https://doi.org/10.1126/sciadv.aax1420

Cloud, P.E. (1973). Paleoecological significance of banded iron-formation. Econ. Geol., v.68, pp.1135–1143.

Condie, K. (2001) Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? Precambrian Res., v.106, pp.239–260. doi:10.1016/S0301-9268(00)00097-8

Derry, L.A., and Jacobsen, S.B. (1990) The chemical evolution of Precambrian seawater evidence from REEs in banded iron formations. Geochim. Cosmochim. Acta, v.54, pp.2965–2977.

Dodd, M.S., Papineau, D., She, Z.B., Manikyamba, C., Wan, Y.S., O’Neil, J., Karhu, J.A., Rizo, H., and Pirajno, F. (2019) Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations. Earth Planet. Sci. Lett., v.512, pp.163-174.

Fairbrother, L., Brugger, J., Shapter, J., Laird, J. S., Southam, G. and Reith, F. (2012) Supergene gold transformation: Biogenic secondary and nanoparticulate gold from arid Australia. Chem. Geol., v.320-321, pp.17-31.

Ganguly S., Manikyamba C., Saha A., Lingadevaru M., Santosh M., Rambabu, S., Khelen A.C., Purushotham D. and Linga D. (2016) Geochemical characteristics of gold bearing boninites and Banded Iron Formations from Shimoga greenstone belt, India: Implications for gold genesis and hydrothermal processes in diverse tectonic settings. Ore Geol. Rev., v.73, pp.59-82.

Gonzalo V., Gomez-Saez et al., (2021) Sulfur enhances carbon storage in the Black Sea. https://phys.org/news/2021-06-sulfur-carbon-storage-blacksea.html

Grotzinger, J.P. and Kasting, J.F. (1993) New constraints on Precambrian ocean composition. Jour. Geol., v.101, v.235-243.

Holland, H. (2002) Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta, v.66, pp.3811-3826.

Holland, H.D. (2003) The geologic history of seawater. In Treatise on Geochemistry (Eds.) H.D. Holland and K.K. Turekian. Pergamon, Oxford, pp. 583-625.

Holland, H.D. and Kasting, J.F. (1992) The environment of the Archean Earth. In: J.W. Schopf and C. Klein (Eds.),The Proterozoic Earth. Cambridge University Press, Cambridge, pp.21-23.

Homann, M. (2019) Earliest life on earth: evidence from the Barberton Greenstone Belt, South Africa. Earth Sci. Rev., v.196, 102888.

Khelen, A.C. (2018) Geological, geochemical and isotopic studies on the Precambrian stromatolitic carbonates of Dharwar craton and Cuddapah basin: Implications on the biogeochemical processes and paleoenvironment. Unpubl. Ph D thesis submitted to CSIR-AcSIR.

Khelen, A.C., Manikyamba, C., Subramanyam, K.S.V., Santosh, M., Ganguly, S., Kalpana, M.S., and Subba Rao, D.V. (2019a) Archean seawater composition and depositional environment – Geochemical and isotopic signatures from the stromatolitic carbonates of Dharwar Craton, India. Precambrian Res., v.330, pp.35–57.

Khelen, A.C., Manikyamba, C., Li Tang, Santosh, M., Dhanakumar Singh, Th. and Subramanyam, K.S.V. (2019b) Detrital zircon U-Pb geochronology of stromatolitic carbonates from the greenstone belts of Dharwar Craton and Cuddapah basin of Peninsular India. Geosci. Front., v.11, pp.229-242.

Klein, C. (2005) Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, v.90, pp.1473–1499.

Knoll, A.H., Bergmann, K.D. and Strauss, J.V. (2016) Life: the first two billion years. Phil. Trans. Royal Soc. Biolog. Sci., v.371, 20150493.

Konhauser, K.O., Amskold, L., Lalonde, S.V., Posth, N.R., Kappler, A., and Anbar, A. (2007) Decoupling photochemical Fe(II) oxidation from shallowwater BIF deposition. Earth Planet. Sci. Lett., v.258, pp.87-100.

Lepot, K. (2020) Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth Sci. Rev., v.209, pp.103296.

Maruyama, S. and Santosh, M. (2017) Frontiers in early Earth history and primordial life – Part I. Geoscience Frontiers, v. 8, pp.211-213.

Manikyamba, C., Sohini Ganguly, Santosh, M. and K.S.V. Subramanyam (2017) Volcano-sedimentary and metallogenic records of the Dharwar greenstone terranes, India: Window to Archean plate tectonics, continent growth, and mineral endowment. Gondwana Res., v.50, pp.38-66

Maurel, M.C., and Leclerc, F. (2016) From Foundation stones to Life: Concepts and Results. Elements, v.12, pp.407-412.

Mukhopadhyay, J. (2020) Archean banded iron formations of India. Earth Sci. Rev., v.201, 102927.

Nisbet, E.G. and Fowler, C.M.R. (1999) Archaean metabolic evolution of microbial mats. Proc. Royal Soc. London Biolog. Sci., v.266, pp.375- 2382.

Pavlov, A.A. and Kasting, J.J. (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology, v.2, pp.27–41.

Raju, P.V.S. (2009). Petrography and geochemical behaviour of trace element, REE and precious metal signatures of sulphidic banded iron formation from the Chikkasiddavanahalli area, Chitradurga schist belt India. Jour. Asian Earth Sci., v.34, pp.663–673.

Raudsepp, M.J. (2012). Late Archean oceans: A laboratory model of oxygen oases. Unpubld. Ph D thesis submitted to the University of Western Australia, 157p.

Schidlowski, M. (1987) Application of stable carbon isotopes to early biochemical evolution on Earth. Ann. Rev. Earth Planet. Sci., v.15, pp.47- 72.

Schoonen, M., and Smirnov, A. (2016) Staging life in an Early Warm ‘Setzer’ Ocean. Elements, v.12, pp.395-400.

Sharma, S.D., Patil, D.J., Srinivasan, R., Gopalan, K., (1994) Very high 18O enrichment in Archean cherts from south India: Implications for Archean ocean temperature. Terra Nova, v.6, pp.385-390.

Sindhuja, C.S., Manikyamba, C., Pahari, A. and Satyanarayanan, M. (2020) Geochemistry of banded sulphidic cherts of Sandur greenstone belt, Dharwar Craton, India: constraints on hydrothermal processes and gold mineralization. Ore Geol. Rev., v.122, doi:10.1016/j.oregeorev.2020. 103529

Sindhuja, C.S. (2021) Geochemical and Isotopic Studies on Carbonaceous Phyllites/Shales from Dharwar Craton and Cuddapah Basin: Implications on Depositional Environment and Gold Mineralization. Unpubld. Ph D thesis submitted to Osmania University.

Thurston, P.C., B.S. Kamber, B.S., Whitehouse, M., (2012) Archean cherts in banded iron formation: Insight into Neoarchean ocean chemistry and depositional processes. Precambrian Res., v.214-215, pp.227–257.

Wachtershauser, G., (1988) Before enzymes and templates: theory of surface metabolism. Microbiological Rev., v.52, pp.452-484.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>