Indian Ocean Ridge System and Seafloor Hydrothermal Activity

Authors

  • National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa
  • Former Director, National Centre for Polar and Ocean Research, Goa
  • National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa
  • National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa

DOI:

https://doi.org/10.1007/s12594-022-1951-z

Keywords:

No Keywords

Abstract

This paper presents a short review of some of the notable contributions by scientists from several parts of the world in furthering our understanding of the seafloor hydrothermal activity on the Indian Ocean ridges (IOR). Studies to date on the hydrothermal plumes and vents on the IOR and the marine sediments around the vents highlight the complex nature of hydrothermal activity on the Indian Ocean ridge system which is characterised by varying spreading rates, differences in the host rock system and perceptible variations in the chemical composition of the hydrothermal fluids.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-02-28

How to Cite

P., J. K., Rajan, S., Kumar Agarwal, D., & Linsy, P. (2022). Indian Ocean Ridge System and Seafloor Hydrothermal Activity. Journal of Geological Society of India, 98(2), 155–164. https://doi.org/10.1007/s12594-022-1951-z

References

Agarwal, D.K., Roy, P., Prakash, L.S. and Kurian, P.J. (2020) Hydrothermal signatures in sediments from eastern Southwest Indian Ridge 63°E to 68°E. Mar. Chem., v.218, 103732. doi:10.1016/j.marchem.2019.103732

Bach, W., Banerjee, N.R., Dick, H.J.B. and Baker, E.T. (2002) Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E. Geochem., Geophys. Geosystems, v.3, pp.1–14. doi:10.1029/2001gc000279

Baker, E.T., Chen, Y.J. and Morgan, P.J. (1996) The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth Planet. Sci. Lett., v.142, pp.137–145. doi:10.1016/0012- 821X(96)00097-0.

Banerjee, R. and Ray, D. (2003) Metallogenesis along the Indian ocean ridge system. Curr. Sci., v.85, pp.321-327.

Beaulieu, S. E., Baker, E. T., German, C. R. and Maffei, A. (2013) An authoritative global database for active submarine hydrothermal vent fields. Geochem. Geophys. Geosystems, v.14, pp.4892–4905. doi:10.1002/ 2013gc004998

Beaulieu, S. E., Baker, E. T. and German, C. R. (2015) Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep Sea Res. Part II, Top. Stud. Oceanogr., v.121, pp. 02–212. doi: 10.1016/ j.dsr2.2015.05.001

Bostrom, K. and Peterson, M.N.A. (1969) The origin of aluminium-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Mar. Geol., v.7, pp.427–447.

Bostrom, K. and Fisher, D. E. (1971) Volcanogenic uranium, vanadium and iron in Indian Ocean sediments. Earth Planet.Sci. Letters, v.11, pp.95-98. doi:10.1016/0012-821X(71)90148-8

Boulart, C., Briais, A., Chavagnac,V. et al. (2017) Contrasted hydrothermal activity along the South-East Indian Ridge (1308E–1408E): From crustal to ultramafic circulation. Geochemistry, Geophys. Geosystems, v. 8, pp.2446–2458. doi:10.1002/2016GC006683.

Cannat, M., Sauter, D., Bezos, A. et al. (2008) Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem., Geophys. Geosystems, v.9, pp.1–26. doi:10.1029/ 2007GC001676

Cave, R., German, C., Thomson, J. and Nesbitt, R. (2002) Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14'N on the Mid- Atlantic Ridge. Geochim. Cosmochim. Acta, v.66, pp.1905–1923. doi:10.1016/S0016-7037(02)00823-2

Chen, J., Tao, C., Liang, J., et al. (2018) Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E. Acta Oceanol. Sin., v.37, pp.61–67. doi:10.1007/s13131-018-1333-y

Chen, X., Sun, X., Wu, Z., Wang, Y., Lin, X. and Chen, H. (2021) Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock. Minerals, v.11, v.138. doi:10.3390/min11020138

Cronan, D. S., Damiani V. V., Kinsman D. J. J. and Thiede, J. (1974) Sediments from the Gulf of Aden and the Western Indian Ocean. In: R.L. Fisher et al. (Eds.)., Initial Reports of the DSDP, US Gov. Print. OIT., Washington D.C., v.24, pp.1047-1110.

DeMets, C., Gordon, R.G. and Argus, D.F. (2010) Geologically current plate motions. Geophy. J. Int., v. 181, pp. 1-80. doi:10.1111/j.1365- 246X.2009.04491.x

Dick, H.J.B., Lin, J. and Schouten, H. (2003) An ultra slow spreading class of ocean ridge. Nature, v.426, pp.405-412.

Edmonds, H.N., Michael, P.J., Baker, E.T., et al. (2003). Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, v.421, pp.252-256. doi:10.1038/nature01351

Elderfield, H. (1995) Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Geophys. Monog., v.91, Amer. Geophys. Union, pp.47-71.

Gamo, T., Chiba, H., Yamanaka, T., et al. (2001) Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth Planet. Sci. Lett., v.193, pp.371–379. doi:10.1016/S0012-821X(01)00511-8

German, C. R. (2003) Hydrothermal activity on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998. Geochemistry, Geophysics, Geosystems, v.4, pp.1–13. doi:10.1029/2003GC000522.

German, C.R., Baker, E.T., Mevel, C. and Tamaki, K. (1998) Hydrothermal activity along the southwest Indian ridge. Nature, v.395, pp.490–493.

German, C.R. and Von Damm, K.L. (2006) Hydrothermal Processes. In: H. Elderfield (Ed.), The oceans and Marine Geochemistry, Treatise on Geochemistry, Oxford, Elsevier, v.6, pp.181–222.

German C.R. and Seyfried, W.E. (2014) Hydrothermal Processes. In: H.D. Holland and K.K. Turekian (Eds.)., Treatise on Geochemistry, Second Edition, Oxford, Elsevier, v.8, pp.191-233.

German, C.R., Resing, J.A., Xu, G., et al. (2020) Hydrothermal Activity and Seismicity at Teahitia Seamount: Reactivation of the Society Islands Hotspot? Frontiers Mar. Sci., v.7(73). doi: 10.3389/fmars.2020.00073

Gharib, J.J., Sansone, F.J., Resing, J.A., et al. (2005) Methane dynamics in hydrothermal plumes over a superfast spreading center: East Pacific Rise, 27.5°-32.3°S. Jour. Geophys. Res., v.110, pp.1–16. doi:10.1029/2004JB 003531

Halbach, P., Blum, N., Pluger, W. and 92 S. S. Party. (1995) The Sonne field – first massive sulfides in the Indian Ocean. InterRidge News, pp.12–15

Hannington, M.D., Jonasson, I.R., Herzig, P.M. and Petersen, S. (1995) Physical and chemical processes of seafloor mineralization at midocean ridges. In: S.E. Humphris et al. (Eds.)., Seafloor hydrothermal systems: Physical, chemical, biological and geological interactions. Geophys. Monog., Amer. Geophys. Union, v.91, pp.115–157.

Hannington, M., Galley, A. G., Herzig, P. M. and Petersen, S. (1998) Comparison of the TAG mound and stockwork complex with Cyprus type massive sulphide deposits. In: P. M. Herzig et al. (Eds.)., Proc. ODP, Sci. Results, College Station, TX, v.158, pp.389-415.

Hannington, M., Jamieson, J., Monecke, T., Petersen, S. and Beaulieu, S. (2011) The abundance of seafloor massive sulfide deposits. Geology, v.12, pp.1155–1158.

Herzig, P.M. and Plueger, W.L. (1988) Exploration for hydrothermal activity near the Rodriguez Triple Junction, Indian Ocean. Canadian Mineral., v.26, pp.721–736.

Hoagland, P., Beaulieu, S.,.Tivey, M. A., Eggert, R. G., German, C., Glowka, L. and Lin, J. (2010) Deep-sea mining of seafloor massive sulphides. Marine Policy, v.34, pp.728–732.

Jean-Baptiste, P., Mantisi, F., Pauwells, H., Grimaud, D. and Patriat, P. (1992) Hydrothermal 3He and manganese plumes at 19°292 S on the Central Indian Ridge. Geophy. Res. Lett., v.19, pp.1787-1790. doi:10.1029/ 92GL00577

Kalangutkar, N.G., Kurian, P.J. and Iyer, S.D. (2021) Characterization of ferromanganese crusts from the Central and South West Indian ridges: Evidence for hydrothermal activity. Marine Georesources and Geotechnology. doi.:10.1080/1064119X.2021.1886205

Kamesh Raju, K. A., Mudholkar, A. V. and Samudrala, K. (2015) Slow Spreading Ridges of the Indian Ocean: An Overview of marine geophysical investigations. Jour. Indian Geophys.Union, v.19, pp.137-159.

Karl, D.M., McMurtry, G.M., Malahoff, A. and Garcia, M.O. (1988) Loihi Seamount, Hawaii: a mid-plate volcano with a distinctive hydrothermal system. Nature, v.335, pp.532-535.

Kawagucci, S., Okamura, K., Kiyota, K., et al. (2008) Methane, manganese, and helium-3 in newly discovered hydrothermal plumes over the Central Indian Ridge, 18°-20°S. Geochemistry, Geophys. Geosystems, v.9, pp.1– 14. doi:10.1029/2008GC002082

Kong, L., Ryan, W. B. F., Mayer, L., et al. (1985) Bare-Rock Drill Sites, ODP Legs 106 and 109: Evidence for Hydrothermal Activity at 23° N in the Mid-Atlantic Ridge, EOS, v.66, pp.1106.

Krasnov, S.G., Cherkashev, G.A., Stepanova, T.V., et al. (1995) Detailed geological studies of hydrothermal fields in the North Atlantic. Geol. Soc. London, Spec. Publ., v.87, pp.43-64. doi:10.1144/GSL.SP.1995.087.01.05

Kuhn, T., Bau, M., Blum, N. and Halbach, P. (1998) Origin of negative Ce anomalies in mixed hydrothermal–hydrogenetic Fe–Mn crusts from the Central Indian Ridge. Earth. Planet. Sci. Lett., v.163, pp.207-220. doi:10.1016/S0012-821X(98)00188-5.

Kuhn, T., Burger, H., Castradori, D. and Halbach, P. (2000) Volcanic and hydrothermal history of ridge segments near the Rodrigues Triple Junction (Central Indian Ocean) deduced from sediment geochemistry. Mar. Geol., v.169, pp.391–409.

Li, M., Toner, B.M., Baker, B.J., Breier, J.A., Sheik, C.S. and Dick, G.J. (2014). Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nature Commun., v.5, pp.3192. doi:10.1038/ ncomms4192.

Liao, S., Tao, C., Li, H., et al. (2018) Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge. Mar. Geol., v.398, pp.22–34. doi:10.1016/j.margeo. 2017.12.005

Mascarenhas-Pereira, M.B.L. and Nath, B.N. (2010) Selective leaching studies of sediments from a seamount flank in the Central Indian Basin: Resolving hydrothermal, volcanogenic and terrigenous sources using major, trace and rare-earth elements. Mar. Chem., v. 121, pp.49–66. doi:10.1016/ j.marchem.2010.03.004

McArthur, J. M. and Elderfield, H. (1977) Metal accumulation rates in sediments from Mid-Indian Ocean Ridge and Marie Celeste Fracture Zone. Nature, v.266, pp.437–439

Murton, B.J., Baker, E.T., Sands, C.M. and German, C.R. (2006) Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean. Geophys. Res. Lett., v.33, pp.1–5. doi:10.1029/2006GL026048

Nakamura, K., Watanabe, H., Miyazaki, J., et al. (2012) Discovery of new hydrothermal activity and chemosynthetic fauna on the Central Indian ridge at 18°-20°S. PLoS One, v.7, pp.1–11. doi:10.1371/journal.pone.00 32965

Nath, B.N., Plüger, W.L. and Roelandts, I. (1997) Geochemical constraints on the hydrothermal origin of ferromanganese encrustations from the Rodriguez Triple Junction, Indian Ocean. Geol. Soc. Spec. Publ., v.119, pp.192–221.

Patriat, P. and Segoufin, J. (1988) Reconstruction of the Central Indian Ocean. Tectonophysics, v.155, pp.211–234.

Petersen, S., Krätschell, A., Augustin, N., Jamieson, J., Hein, J. R. and Hannington, M. D. (2016) News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources. Marine Policy, v.70, pp.175–187.

Pluger, W. L., Herzig, P.M., Becker, K.P., et al. (1990) Discovery of hydrothermal fields at the central Indian ridge. Marine Mining, v.9, pp.73–86

Rao, P.S., Kamesh Raju, K.A., Ramprasad, T., Nath, B.N., Rao, B.R., Rao, Ch.M. and Nair, R.R. (1996) Evidence for hydrothermal activity in the Andaman Back arc Basin. Curr. Sci., v.70, pp.379–385.

Ray, D., Kamesh Raju, K.A., Baker, E.T., et al. (2012) Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean. Geochemistry, Geophys. Geosystems, v.13. doi:10.1029/2011GC003888

Ray, D., Kamesh Raju, K.A., Rao, A.S., et al. (2020) Elevated turbidity and dissolved manganese in deep water column near 10o47'S Central Indian Ridge: studies on hydrothermal activities. Geo-Marine Lett., v.40, pp.619-628.

Rona, P.A. (1988) Hydrothermal mineralization at oceanic ridges. Canadian Mineral., v.26, pp.431-465.

Royer, J.-Y., Patriat, P., Bergh, H.W. and Scotese, C.R. (1988) Evolution of the Southwest Indian Ridge from the late Cretaceous to the middle Eocene. Mesozoic and Cenozoic plate reconstructions. Tectonophysics, v.155, pp.235–260.

Royer, J.-Y. and Sandwell, D. T. (1989) Evolution of the eastern Indian Ocean since the Late Cretaceous: Constraints from Geosat altimetry. Jour. Geophys. Res., v.94, pp.13,755– 13,782. doi:10.1029/JB094iB10 p13755

Scheirer, D.S., Baker, E.T. and Johnson, K.T.M. (1998) Detection of hydrothermal plumes along the Southeast Indian Ridge near the Amsterdam-St. Paul Plateau. Geophys. Res. Lett., v. 25, pp.97–100. doi:10.1029/97GL03443

Schlitzer, R. (2016) Quantifying He fluxes from the mantle using multi-tracer data assimilation. Philos. Trans., A 374. doi:10.1098/rsta.2015.0288

Srinivasan, A., Top, Z., Schlosser, P., et al. (2004) Mantle 3He distribution and deep circulation in the Indian Ocean. Jour. Geophys. Res. Ocean., v.109, pp.1–17. doi:10.1029/2003JC002028

Suryprakash, L., Ray, D., Nath, B, N., et al. (2020) Anomalous phase association of REE in ferromanganese crusts from Indian mid-oceanic ridges: Evidence for large scale dispersion of hydrothermal iron. Chemical Geol., v. 549, 119679. doi:10.1016/j.chemgeo.2020.119679.

Tao, C., Lin, J., Guo, S., et al. (2012) First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, v.40, pp.47– 50. doi:10.1130/G32389.1

Tao, C., Wu, G., Deng, X., Qiuz, H., Han, C. and Long, Y. (2013) New discovery of seafloor hydrothermal activity on the Indian Ocean Carlsberg Ridge and Southern North Atlantic Ridge-progress during the 26th Chinese COMRA cruise. Acta Oceanol. Sin., v.32, pp.85–88. doi:10.1007/s13131-013-0345-x

Tao, C., Li, H., Jin, X., et al. (2014) Seafloor hydrothermal activit y and polymetallic sulfide exploration on the southwest Indian ridge. Chinese Sci. Bull., v.59, pp.2266–2276.

Tao, C., Chen, S., Baker, E.T., et al. (2017) Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu- 1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge. Mar. Geophys. Res., v.38, pp.3–16. doi:10.1007/s11001-016-9275-2

Von Damm, K.L. (1995). Controls on the chemistry of temporal variability of seafloor hydrothermal fluids. In: S.E. Humphris, et al. (Eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions Systems. Amer. Geophys. Union, Washington. D.C., pp.222– 247.

Wang, Y., Han, X., Petersen, S., et al. (2017) Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geol. Rev., v.84, pp.1–19. doi:10.1016/j.oregeorev.2016.12.020

Yu, Z., Li, H., Li, M. and Zhai, S. (2016) Hydrothermal signature in the axialsediments from the Carlsberg Ridge in the northwest Indian Ocean. Jour. Mar. Syst., doi:10.1016/j.jmarsys.2016.11.013

Zierenberg, R.A., Fouquet, Y., Miller, D.J., et al. (1998) The deep structure of a sea-floor hydrothermal deposit. Nature, v.392, pp.485-488.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.