Lithofacies Characterisation of Oligocene Barail Sediments in Parts of Tiru Valley, Nagaland, Northeast India

Authors

  • NCERT Building, Upper Nongrim Hills, Geological Survey of India, Shillong – 793 001
  • Department of Earth Science, Assam University, Silchar – 788 011
  • Department of Earth Science, Assam University, Silchar – 788 011

DOI:

https://doi.org/10.1007/s12594-022-1961-x

Keywords:

No Keywords

Abstract

The Oligocene Barail sedimentary sequence (Tikak Parbat Formation) of Tiru valley, Nagaland constitutes a part of the Belt of Schuppen. These sequences have been studied for the first time employing lithofacies analysis technique. A total of eleven lithofacies namely, coal facies (C), coaly shale facies (CSh), grey shale facies (Sh), shale-sand laminites facies (Ls), ripple laminated shale-sand facies (Rs), tabular cross stratified sandstones facies (Sp), trough cross stratified sandstones facies (St), compound cross stratified sandstone facies (Sc), ripple cross-stratified sandstone facies (Sr), paleosol facies (P) and mudstone facies (Mst) grouped into two lithofacies associations i.e. coal laminites facies association (CLFA) and cross stratified facies association (XSFA) have been identified using four vertical profile sections (VPS) measured and recorded along cut faces of open cast mine in parts of Tiru valley coal field, Nagaland. Presence of coal, silt-mud, very fine to medium sand, heterolithic stratifications (flaser, wavy lenticular and tidal beddings), compound, tabular and trough cross stratifications having low to tangential foresets with abundant mud drapes, bimodal bipolar cross stratification, and substantial reactivation surfaces indicate deposition in a tidal flat environment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-02-28

How to Cite

Chiezou, K., Pandey, N., & Baruah, M. (2022). Lithofacies Characterisation of Oligocene Barail Sediments in Parts of Tiru Valley, Nagaland, Northeast India. Journal of Geological Society of India, 98(2), 211–218. https://doi.org/10.1007/s12594-022-1961-x

References

Allen, J.R.L. (1980) Sand waves; a model of origin and internal structure. Sediment. Geol., v.26, pp.281–328.

Allen, J.R.L., Friend, P., Lloyd, A. and Wells, H. (1994) Morphodynamics of intertidal dunes: a year -long study at lifeboat station Bank, Wells-nextthe sea, eastern England. Phil. trans. Roy. Soc. London, Series A, v.347, pp.291-345.

Acharyya, S.K. (1986) Tectono-stratigraphic history of Naga hills Ophilites. Mem. Geol. Surv. India, v.119, pp.94-103.

Acharyya, S.K., Ray, K.K., Sengupta,S. (1990) Tectonics of Ophiolite belt from Naga Hills and Andaman Islands, India. In: Naha, K., Ghosh, S.K. Mukhopadhyay, D.(Eds.), Structure and Tectonics: The Indian Scene. National Acad. Sci. India (Earth Planet. Sci.), v.99, pp.187-199.

Basilici, G., Deluca, P.V. and Oliveira, E. (2012) A depositional model for a wave-dominated open-coast tidal flat, based on analyses of the Cambrian- Ordovician Lagarto and Palmares formation, north-eastern Brazil. Sedimentology, v.59, pp.1613-1639.

Breda, A. and Pinto, N. (2011) Anatomy of an Upper Triassic continental to marginal –marine system: the mixed siliciclastic –carbonate Travenanzes Formation (Dolomites, Northern Italy). Sedimentology, v.58, pp.1613- 1647.

Boggs, S. Jr. (2012) Principles of Sedimentology and Stratigraphy, 5thedition. Pearson Prentice Hall, New Jersey 07458, USA, pp.69-79.

Collinson, J.D. (1996) Alluvial sediments. In: H.G. Reading (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy, Blackwell Science, Oxford, pp.37-82.

Catuneanu, O. (2002) Sequence stratigraphy of clastic systems: concepts, merit, and pitfalls. Jour. African Earth Sci., v.35, pp.1-43.

Chanda, S.K. And Bhattacharyya, A. and Sarkar, S. (1977) Deformation of ooids by compaction in the Precambrian Bhander Limestone, India-Implications for lithification. Geol. Soc. Amer. Bull., v.85, pp.1577-1585.

Chakraborty, C and Bose, P. K. (1990) Internal structures of sand waves in a tide-storm interactive system: Proterozoic Lower Quartzite Formation, India. Sediment. Geol., v.67, pp.133–142.

Dadu, F. (2013) Classification, Sedimentary features and facies associations of tidal flats. Jour. Plaeography, Marine Sediment., v.2(1), pp.66-80.

Dalrymple, R.W. (2010) Tidal depositional systems. In: James, N.P., Dalrymple, R.W., (Eds.), Facies Models 4. Geol. Assoc. Canada, St. Johns, pp.201-232.

Dalrymple, R.W. (1984) Morphology and internal structures of sand waves in the Bay of Fundy. Sediment., v.31, pp.365–382.

De Raaf, J.F.M., Boersma, J.R. and Gelder, A. Van (1977) Wave-generated structures and sequences from a shallow marine succession, Lower Carboniferous, County Cork, Ireland. Sediment., v.24, pp.451-483.

Diesel, C.F.K. (1992) Coal bearing depositional system. Springer Verlag, 721p. Diessel, C.F.K. (1986) On the correlation between coal facies and depositional environments. Proc. 20th Symp. Dep. Geol., University Newcastle, N.S.W., pp.19-22.

Evans, P. (1932) Tertiary succession in Assam. Trans. Min. Geol. India, v.27, p.155.

Fan, D. D., Cai, G. F., Shang, S., Wu, Y. J., Zhang, Y. W., Gao, L. (2012) Sedimentation processes and sedimentary characters of tidal bores along the north bank of the Qiantang Estuary. Chinese Science Bulletin, v.57, no.13, pp.1578-1589.

Fenies, H., De Ressequier, A., Tastet, J. P. (1999) Intertidal clay-drape couplets (Gironde Estuary, France). Sediment., v.46, pp.1-15.

Friedman, G.M. and Chakraborty, C. (2006) Interpretation of tidal bundles: Two reasons for a paradigm shift. Carbonate Evaporite. v.21, pp.170- 175.

Goodbred, S.L., Jr., Andkuehl, S.A. (2000) The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta. Sediment. Geol., v.133, pp.227-248.

Harms, J.C., Southard, J.B. and Walker, R.G. (1982) Structure and sequences in clastic rocks. Society of Economic Paleontologists’ and Mineralogists. Short Course Notes, no.9, pp.18-51.

Imbellone, P.A. (2011) Classification of paleosols. Geociencias, v.30(1), pp.05-13.

Jopling, A.V. (1965) Laboratory study of sorting processes in cross-bedded deposits. In: G.V. Middlelton (Ed.), Primary sedimentary structures and their hydrodynamic interpretation. SEPM, Spec. Publ., v.12, pp.53-65.

Klein, G.D. (1972) Determination of palaeotidal range in clastic sedimentary rocks. XXIV Intern. Geol. Congr. Proc. Sec. 6, pp.397-405.

Klein, G.D. (1971a) A sedimentary model for determining paleotidal range: Geol. Soc. Amer. Bull., v.82, pp.2585-2592.

Longhitano, S.G. (2011) The record of tidal cycles in mixed silica-bioclastic deposits: examples from small Plio-Pleistocene peripheral basin of the microtidal central Mediterranean Sea. Sedimentol., v.58(3), pp.691-719.

Mack, G.H., James, W.C. and Monger, H. C. (1993) Classification of palaeosols. Geol. Soc. Amer. Bull., v.105, pp.129-136.

Mathur, L. and Evans, P. (1964) The tectonic framework of Assam. Jour. Geol. Soc. India, v.5, pp.80-96.

Mc Cabe, P.J. (1984) Depositional environments of coal and coal-bearing strata. In: Rahmani, R.A. and Flores, R.M. (Eds.), Sedimentology of Coal and coal –bearing sequence. Internat. Assoc. Sedimentol. Spec. Publ., no.7. pp.13-42, Blackwell Scientist Publications, Oxford.

McKee, E.D.and Weir, G.W. (1953) Terminology for stratification and cross stratification in sedimentary rocks. Geol. Soc. Amer. Bull. v.64, pp.381- 244.

Miall, A.D. (1990) Hierarchies of architectectural units in clastic rocks, and their relationships to sedimentation rate, In: A.D. Miall and Taylor (Eds.), The three dimensional facies architecture of terrigenous clastic-sediments. Soc. Econ. Palaeo. Mineral., v.3, pp.6-12.

Medlicott, H.B. (1865) The coal of Assam, results of a brief visit to the coalfields that province in 1865; with Geological note on Assam and the Hills to the south of it. Mem. Geol. Surv. India, v.4(3), pp.388-442.

McCaffrey, W. and Kneller, B. (2001) Process controls on the development of stratigraphic traps potential on the margins of confined turbidite systems and aids to reservoir evaluation, the Amer. Assoc. Petrol. Geol. Bull., v.85(6), pp.1-18.

Mowbray, T. and Visser, M.J. (1984) Reactivation surfaces in subtidal channel deposits, Oosterschelde, southeast Netherlands. Jour. Sediment. Petrol., v.54, pp.811–824.

Mutti, E. and Ricci Lucchi, F. (1972) Letorbiditi dell’ Appennino Settentrionale: Introdizuoneall’ Analisi di Facies. Mem. Soc. Geol. It., v.11, pp.161-199.

Nettleton, W.D., Olson, C.G. and Wysocki, D.A. (2000) Paleosol classification: Problems and solutions. Catena, v.41, pp.61-92.

Nio, S.D. and Yang, S.C. (1991) Diagnostic attributes of clastical tidal deposits: a review. In: D.G. Smith, G.E. Reison, B.A. Zaitlin, and R.A. Rahmani (Eds.), Clastical Tidal Sedimentology, Canadian Soc. Petrol. Geol., Mem., v.16, pp.3-28.

Nichols, G. (2009) Sedimentology and Stratigraphy, Second Edition, Wiley Blackwell, 432p.

Phillips, S., Bustin, R.M. and Lowe, L.E. (1994) Earthquake induced flooding of a tropical coastal peat swamp: a modern analogue for high sulfur coals? Geology, v.22, pp.929-932.

Plink-Bjorklund, P. (2005) Stacked fluvial and tide-dominated estuarine deposits in high-frequency (fourth-order) sequences of the Eocene Central Basin, Spitsbergen. Sedimentol., v.52, pp.391-428.

Prasad, K.R.K. and Sarma, H.(1982) Systematic geological mapping of the Naginimara-Upper Tiru-Oting area, Mon district, Nagaland. Geol. Surv. India, Unpubld. Progress Report for FS 1981-82.

Querol, X., Chinenon, S. and Lopez-Soler, A. (1989) Iron sulphide precipitation sequence in Albian coals from the Maestrazgo basin, southeastern IberianRange, northeastern Spain. Internat. Jour. Coal Geol., v.11, pp.171– 189.

Raja Rao, C.S. (1981) Coalfields of India, coalfields of north eastern India. Geol. Surv. India, Bull. Series-A, No.45(1), pp.75.

Reineck, H.E., Singh, I.B. (1980) Depositional sedimentary environment. Springer-Verlag, New York, 549p.

Selley, R.C. (1970) Ancient sedimentary environments. Chapman and Hall, London, 237p.

Selley, R.C. (1976) Subsurface environment analysis of North Sea sediments. Bull. Amer. Assoc. Petrol. Geol., v.60, pp.184-195.

Singh, A.K., Singh, M.P. and Singh, P.K. (2013) Petrological investigation of Oligocene coals from foreland basin of northeast India. Energy Exploration & Exploration. Multi-Science Publ., v.31(6), pp.909-936.

Singh, P.K., Singh, M.P., Singh, A.K. and Naik, A.S. (2012) Petrographic and geochemical characterization of coals from Tiru valley, Nagaland, NE India. Energy Exploration and Exploitation, v.30(2), pp.171-192.

Singh, P.P. And Singh, I.B. (1992) Cross –bedding with tidal bundles and mud drapes: Evidence for tidal influence in Bhuj Sandstone (Lower Cretaceous), Eastern Kachchh. Jour. Geol. Soc. India, v.39, pp.487-493.

Shanley, K.W., Mccabe, P.J. and Hettinger, R.D. (1992) Tidal influence in Cretaceous fluvial strata from Utah: akey to sequence stratigraphic interpretation. Sedimentol., v.39, pp.905–930.

Schieber, J., Southard, J.B., Thaisen, K.G. (2007) Accretion of mudstone beds from migrating floccule ripples. Science, v.318, pp.1760–1763.

Schieber, J. and Southard, J.B. (2009) Bedload transport of mud by floccule ripples – direct observation of ripple migration processes and their implications. Geology, v.37, pp.483-486.

Schieber, J. (2011) Reverse engineering Mother Nature–shale sedimentology from an experimental perspective. Sediment. Geol., v.238, pp.1–22.

Swett, K., Klein, G.D. and Smit, D.E. (1971) A Cambrian Tidal Sand Body: The Eriboll Sandstone of Northwest Scotland: An Ancient-Recent Analog. Jour. Geol., v.79(4), pp.400-415.

Srivastava, V.K. and Singh, B.P. (2017) Shoreface to estuarine sedimentation in the late Paleocene Matanomadh Formation, Kachchh, western India. Jour. Asian Earth Sci., v.136, pp.1-15.

Singh, B.P., Tandon, S.K., Singh, G.P., And Pawar, J.S., (2009) Paleosol in early Himalayan foreland basin sequences demonstrate latitudinal shift related long term climatic change. Sedimentol., v.56, pp.1464-1487.

Singh, B.P. and Singh, H., (1995a) Evidence of tidal influence in the Murree Groups of rocks of the Jammu Himalaya, India. In: B.W. Flemming and A. Bartholoma (Eds.), Tidal Signatures in Modern and Ancient Sediments. Internat. Assoc. Sedimentol. Spec. Publ., no.24, pp.343–351.

Thorez, J., Goemaere, E. and Dreesen, R. (1988) Tide and wave-influenced depositional environments in the Psammites du Controz (Upper Famennian) in Belgium. In: De Boer P.L. et al. (Eds.), Tide –Influence Sedimentary Environment and Facies, pp.389-415.

Vekhotoshijoh, Chiezou, K. and Pandey, N. (2018) Geochemical Characteristics of Palaeogene oil Shale and oil Seeps in parts of Naga Hills, Northeast India. Internat. Jour. Curr. Adv. Res., v.07(10), pp.1467-14771.

Visser, M.J. (1980) Neap-spring cycles reflected in Holocene sub-tidal largescale bedform deposits: A preliminary note. Geology, v.8, pp.543-546.

Yang, B.C., Dalrymple, R.W. and Chun, S.S. (2005) Sedimentation on a wavedominated, open-coast tidal flat, south-western Korea: summer tidal-winter shore face. Sediment., v.52, pp.235-252.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.