Evolution of the Ladakh Magmatic Arc

Authors

  • Department of Earth Sciences, University of Kashmir, Srinagar, J&K, 190 006
  • Department of Geology, University of Delhi, Delhi, 110 007

DOI:

https://doi.org/10.1007/s12594-021-1812-1

Keywords:

No Keywords

Abstract

In this contribution, the evolution of the Ladakh magmatic arc encompassing ca 160 Ma history from subduction initiation to intra-oceanic arc collision to final continent-continent collision is summarized. The observed compositional variation in Ladakh magmatic arc reflects directional maturity from mafic magmatism towards south to more acidic magmatism towards north, and therefore indicating northward dipping subduction. Based on the ca 160 Ma Neo-Tethys geodynamic reconstruction, the evolution of the Ladakh magmatism can be summarized into three distinct time periods; (i) from 160 to 80 Ma, representing intra-oceanic island arc (IOIA) complex dominantly of mafic magmatism, (ii) from 80 to 50 Ma, the magmatism shifts to felsic composition (involving Indian continental margin) in the form of Kohistan-Ladakh batholith and (iii) from 35 to 18 Ma, the magmatism occurred in the form of post-collisional dykes. We also support the double collision model of Ahmad et al. (2008), according to which the first collision occurred between IOIA complex (including Kohistan-Ladakh batholith) with southern margin of Asia during mid-Cretaceous to late-Cretaceous along Shyok Suture Zone (SSZ). Finally, the accreted IOIA and Asian plate margin collided with the northern margin of Indian plate during Late Eocene ∼40 Ma along the Indus Suture Zone (ISZ).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2023-12-17

How to Cite

Bhat, I. M., & Ahmad, T. (2023). Evolution of the Ladakh Magmatic Arc. Journal of Geological Society of India, 97(9), 980–984. https://doi.org/10.1007/s12594-021-1812-1

References

Abrajevitch, A.V., Ali, J.R., Aitchison, J.C., Badengzhu, Davis, A.M., Liu, J.B. and Ziabrev, S.V. (2005) Neotethys and the India-Asia collision: insights from a palaeomagnetic study of the Dazhuqu ophiolite, southern Tibet. Earth Planet. Sci. Lett., v.233, pp.87–102.

Ahmad, T., Tanaka, T., Sachan, H.K., Asahara, Y., Islam, R. and Khanna, P.P. (2008) Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, Ladakh, India: implications for the Neo– Tethyan subduction along the Indus suture zone. Tectonophysics, v.451, pp.206–224.

Aitchison, J.C., Ali, J.R. and Davis, A.M. (2007) When and where did India and Asia collide? Jour. Geophys. Res., v.112, pp.1–19.

Bhat, I.M., Ahmad, T. and Subba Rao, D.V. (2017) Geochemical characterization of serpentinized peridotites from the Shergol ophiolitic slice along the Indus Suture Zone (ISZ), Ladakh Himalaya, India. Jour. Geology, v.125, pp.501–513.

Bhat, I.M., Ahmad, T. and Subba Rao, D.V. (2019) The tectonic evolution of Dras arc complex along Indus Suture Zone, western Himalaya: Implications for Neo–Tethys geodynamics. Jour. Geodynamics, v.124, pp.52–66.

Bhat, I.M., Ahmad, T., Subba Rao, D.V., Balakrishnan, S. and Rao, N.C.V. (2021) PGE and isotopic characteristics of Shergol and Suru Valley Ophiolites, Western Ladakh: Implications for supra-subduction tectonics along Indus Suture Zone. Geoscience Frontiers, v.12(3), pp.101118.

Brookfield, M.E. and Reynolds, P.H. (1981) Late Cretaceous emplacement of the Indus suture zone ophiolitic melanges and an Eocene-Oligocene magmatic arc on the northern edge of the Indian plate. Earth Planet. Sci. Lett., v.55, pp.157–162.

Buckman, S., Aitchison, J.C., Nutman, A., Bennett, V., Saktura, W.M., Walsh, J., Kachovich, S. and Hidaka, H. (2018) The Spongtang Massif in Ladakh, NW Himalaya: An Early Cretaceous record of spontaneous, intra–oceanic subduction initiation in the Neotethys. Gondwana Res., v.63, pp.226– 249.

Forster, M.A., White, L.T. and Ahmad, T. (2011) Thermal history of a pebble in the Indus molasse at the margin of a Himalayan metamorphic core complex. Jour. Virtual Explorer, v.38, pp.1–21.

Gibbons, A.D., Zahirovic, S., Muller, R.D., Whittaker, J.M. and Yatheesh, V. (2015) A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Res., v.28, pp.451–492.

Hall, R. (2012) Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, v.570, pp.1–41.

Hebert, R., Bezard, R., Guilmette, C., Dostal, J., Wang, C.S. and Liu, Z.F. (2012) The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: first synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Res., v.22, pp.377–397.

Heuberger, S., Schaltegger, U., Burg, J.P., Villa, I.M., Frank, M., Dawood, H. and Zanchi, A. (2007) Age and isotopic constraints on magmatism along the Karakoram-Kohistan Suture Zone, NW Pakistan: Evidence for subduction and continued convergence after India-Asia collision. Swiss Jour. Geosci., v.100, pp.85–107.

Honegger, K., Dietrich, V., Frank, W., Gansser, A., Thoni, M. and Trommsdorff, V. (1982) Magmatism and metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone). Earth Planet. Sci. Lett., v.60(2), pp.253– 292.

Hu, X.M., Garzanti, E., Wang, J.G., Huang, W.T., An, W. and Webb, A. (2016) The timing of India Asia collision onset facts, theories, controversies. Earth-Science Rev., v.160, pp.264–299.

Heri, A.R., Bahl, J. and Villa, I.M. (2019) Geochemical discrimination and petrogenetic affinities of dykes intruding the Ladakh batholith, NW India. Geol. Soc. London Spec. Publ., v.481, pp.231–250.

Jagoutz, O., Bouilhol, P., Schaltegger, U. and Muntener, O. (2018) The isotopic evolution of the Kohistan Ladakh arc from subduction initiation to continent arc collision. Geol. Soc. London Spec. Publ., v.483, pp.SP483– 7.

Jain, A.K., Ahmad, T., Singh, S., Ghosh, S.K., Patel, R.C., Kumar, R. and Bhargava, O.N. (2012) Evolution of the Himalaya. In: Proc. Indian Natural Sci. Acad., v.78, pp.259–275.

Jain, A.K. (2014) When did India–Asia collide and make the Himalaya. Curr. Sci., v.106, pp.254–266.

Kakar, M.I., Collins, A.S., Mahmood, K., Foden, J.D. and Khan, M. (2012) U-Pb zircon crystallization age of the Muslim Bagh ophiolite: enigmatic remains of an extensive pre-Himalayan arc. Geology, v.40, pp.1099–1102.

Kowser, N., Chandra, R. and Sathyanarayanan, M. (2017) Geochemical characterization of granitoids of the Panamik-Sasoma section of eastern Karakoram Axial Batholith from the Nubra Valley, Ladakh, India. Himalayan Geol., v.38, pp.68–77.

Kumar, R.N., Lal, N., Singh, S. and Jain, A.K. (2007) Cooling and exhumation of the Trans-Himalayan Ladakh batholith as constrained by fission track apatite and zircon ages. Curr. Sci., v.90, pp.490–496.

Kumar, S. (2010) Mafic to hybrid microgranular enclaves in the Ladakh batholith, northwest Himalaya: Implications on calc-alkaline magma chamber processes. Jour. Geol. Soc. India, v.76(1), pp.5–25.

Kumar, S., Bora, S., Sharma, U.K., Yi, K. and Kim, N. (2017) Early Cretaceous subvolcanic calc-alkaline granitoid magmatism in the Nubra-Shyok valley of the Shyok Suture Zone, Ladakh Himalaya, India: Evidence from geochemistry and U–Pb SHRIMP zircon geochronology. Lithos, v.277, pp.33–50.

Lakhan, N., Singh, A.K., Singh, B.P., Sen, K., Singh, M.R., Khogenkumar, S., Singhal, S. and Oinam, G. (2020) Zircon U–Pb geochronology, mineral and whole rock geochemistry of the Khardung volcanics, Ladakh Himalaya, India: Implications for Late Cretaceous to Palaeogene continental arc magmatism. Geological Jour., v.55(5), pp.3297–3320.

Maheo, G., Bertrand, H., Guillot, S., Villa, I.M., Keller, F. and Capiez, P. (2004) The south Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic origin with implication for the closure of the Neo-Tethys. Chemical Geol., v.203, pp.273–303.

Pedersen, R.B., Searle, M.P. and Corfield, R.I. (2001) U–Pb zircon ages from the Spontang Ophiolite, Ladakh Himalaya. Jour. Geol. Soc. London, v.158, pp.513–520.

Plank, T. and Langmuir, C.H. (1988) An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet. Sci. Lett., v.90, pp.349–370.

Pundir, S., Adlakha, V., Kumar, S., Singhal, S. and Sen, K. (2020) Petrology, geochemistry and geochronology of granites and granite gneisses in the SE Karakoram, India: Record of subduction-related and pre-to synkinematic magmatism in the Karakoram Fault Zone. Mineral. Petrol., v.114, pp.413–434.

Ravikant, V., Wu, F.Y. and Ji, W.Q. (2009) Zircon U–Pb and Hf isotopic constraints on petrogenesis of the Cretaceous-Tertiary granites in eastern Karakoram and Ladakh, India. Lithos, v.110, pp.153–166.

Reagan, M.K., Pearce, J.A., Petronotis, K., Almeev, R.R., Avery A.J., Carvallo, C., Chapman, T., et al. (2017) Subduction initiation and ophiolite crust: New insights from IODP drilling. Internat. Geol. Rev., v.59, pp.1439– 1450.

Reuber, I., Montigny, R., Thuizat, R. and Heitz, A. (1990) K/Ar ages of ophiolites and arc volcanics of the Indus suture zone (Ladakh): comparison with other Himalaya – Karakorum data. Jour. Himalayan Geol., v.1, pp.115–125.

Searle, M.P., Khan, M.A., Fraser, J.E. and Gough, S.J. (1999) The tectonic evolution of the Kohistan–Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics, v.18, pp.929–949.

Thakur, V.C. and Mishra, D.K. (1984) Tectonic framework of the Indus and SSZ in eastern Ladakh, northwest Himalaya. Tectonophysics, v.101, pp.207–220.

Thanh, N., Rajesh, V., Itaya, T., Windley, B., Kwon, S. and Park, C.S. (2012) A Cretaceous forearc Ophiolite in the Shyok Suture Zone, Ladakh, NW India. Implications for the tectonic evolution of the Northwest Himalaya. Lithos, v.155, pp.81–93.

Upadhyay, R., Frisch, W. and Siebel, W., 2008. Tectonic implications of new U-Pb zircon ages of the Ladakh batholith, Indus suture zone, northwest Himalaya, India. Terra Nova, v.20, 309–317.

Walsh, J.M., Buckman, S., Nutman, A.P. and Zhou, R. (2021) The significance of Upper Jurassic felsic volcanic rocks within the incipient, intraoceanic Dras Arc, Ladakh, NW Himalaya. Gondwana Res., v.90, pp.199–219.

Whattam, S.A. and Stern, R.J. (2011) The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic fore-arcs, and subduction initiation. Contrib. Mineral. Petrol., v.162, pp.1031–1045.

White, L.T., Ahmad, T., Ireland, T.R., Lister, G.S. and Forster, M.A. (2011) Deconvolving episodic age spectra from zircons of the Ladakh Batholith, northwest Indian Himalaya. Chemical Geol., v.289, pp.179–196.

White, L. T., Ahmad, T., Lister, G. S. Ireland, T. R., and Forster, M.A. (2012). Is the switch from I- to S-type magmatism in the Himalayan Orogen indicative of collision of India and Asia? Australian Jour. Earth Sci., v.59, pp.321-340.

Zyabrev, S.V., Kojima, S. and Ahmad, T. (2008) Radiolarian biostratigraphic constraints on the generation of the Nidar ophiolite and the onset of Dras arc volcanism: tracing the evolution of the closing Tethys along the Indus- Yarlung-Tsangpo suture. Stratigraphy, v.5, pp.99–112.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.