Mineral Chemistry and Geothermometry of Biotite in the Granitoids, Located in and around Jirang-Patharkhamah Area, Ri-Bhoi District, Meghalaya, India

Authors

  • Department of Geology, Cotton University, Guwahati - 781 001
  • Department of Geological Sciences, Gauhati University, Guwahati - 781 014

DOI:

https://doi.org/10.1007/s12594-022-1965-6

Keywords:

No Keywords

Abstract

Granitoids are well exposed in Jirang-Patharkhamah area (latitude N 25°57'- 25°41' and longitude E 91°30' - 91°38'). The area lies mostly inRi-Bhoidistrict and is also extended to West Khasi Hills district of Meghalaya. The granitoids are medium grained and nonporphyritic. The colour is dominantly grey although some granitoids are pink in colour. The common minerals in order of abundance are quartz, plagioclase, K-feldspar, biotite and hornblende. Secondary minerals are sericite, chlorite, muscovite, secondary hornblende and secondary biotite. Among accessory minerals, sphene, zircon, apatite, calcite, zoisite, magnetite and monazite are significant. The intergrowth textures such as perthite, myrmekite in these rocks indicate that the rocks were affected by low temperature alteration. The representative samples ploy in the field of granite in various geochemical discrimination diagrams. The aim of the present paper is geochemical characterisation of the granitoids using major and trace elements (including REE). The whole rock geochemistry reveals that the granitoid is I-type, calc-alkaline, metaluminous to weakly peraluminous and an attempt is made to examine the nature of the magma based on biotite mineral chemistry. The biotite chemistry indicates that the granitoid is I-type and calc-alkaline. The paper also aims to estimate temperature of emplacement of granitoids based on two feldspar geothermometer and Ti-in biotite geothermometer. The temperature calculated from two feldspar thermometry is in the range 512-602°C and the average is 550°C. The temperature calculated by Ti-in biotite thermometer is in the range 623 to 656°C and the average is 645°C. Geothermometric results plays an important role in definition of petrogenetic history and regional tectonism.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-02-28

How to Cite

Gogoi, A., & Bhagabaty, B. (2022). Mineral Chemistry and Geothermometry of Biotite in the Granitoids, Located in and around Jirang-Patharkhamah Area, Ri-Bhoi District, Meghalaya, India. Journal of Geological Society of India, 98(2), 245–259. https://doi.org/10.1007/s12594-022-1965-6

References

Abdel-Rahman, A. (1994) Nature of biotites from Alkaline, calc-alkaline, and peraluminous magmas. Jour.Petrol., v.35(2), pp.525-541.

Abrecht, J. and Hewitt, D.A. (1988) Experimental evidence on the substitution of Ti in biotite. Amer. Mineral., v.73, pp.1275-1284.

Ague, J.J., Brimhall, G.H. (1988) Regional variations in bulk chemistry, mineralogy, and compositions of mafic and accessory minerals in batholiths of California. Geol. Soc. Amer., v.100(6), pp.891-911.

Albuquerque, C.A. (1973) Geochemistry of biotites form granitic rocks, Northern Portugal. Geochim. Cosmochim. Acta, v.37, pp.1779-1802.

Anderson, J.L., Barth, A.P, Young, E.D. (1988) Mid-crustal Creteceous roots of Cordilleran metamorphic core complexes. Geology, v.16(4), pp.366-369.

Anderson, J.L., Barth, A.P., Wooden, J.L., Mazab, F. (2008) Thermometers and Thermobarometers in Granitic Systems. Rev. Mineral. Geochem., v.69(1), pp.121-142.

Arima, M. and Edgar, A.D. (1981) Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin. Contrib. Mineral. Petrol., v.77, pp.288-295.

Arth, J.G. (1979) Some trace elements in Trondhjemite-their implications to magma genesis and paleotectonic setting. In: F. Barker (Ed.), Trondhjemites, Dacites and Related rocks.: Amsterdam, Elsevier Scientific Publishing Co., pp.1-12.

Barbarin, B. (1999) A review of relationships between granitoid types, their origins and their geodynamic environments. Lithos, v.46, pp.605-626.

Barth, T.F.W. (1934) Polymorphic phenomena and crystal structure. Amer. Jour. Sci., v.5, pp.273.

Barth, T.F.W. (1951) The feldspar geological thermometers. Neues Jahrb. Mineral, v.82, pp.143-154.

Bhagabaty, B. and Mazumdar, A.C. (2008) Petrology of granulites from Shillong Plateau in West Garo Hills district, Meghalaya, India. Jour. Nepal Geol. Soc., v.37, pp.1-10.

Bhagabaty, B., Mazumdar, A.C. and Borah, P. (2017) Geochemical characteristics of Tukureswari and Barbhita Granitoids in Goalpara District,Assam. Jour. Geol. Soc. India, v.89, pp.532-540.

Bidyanand, M. and Deomurari, M.P. (2007) Geochronological constraints on the evidence of Meghalaya massif, northeastern India: an ion microprobe study. Curr. Sci., v.93(11), pp.1620-1623.

Buddington, A.F., Lindsley, D.H. (1964) Iron-titanium oxide minerals and synthetic equivalents. Jour. Petrol., v.5, pp.310-357. Burkhand, D.J.M. (1993) Biotite crystallisation temperature and redox states in granitic rocks as indicator for tectonic setting. Geol. Mijnbouw, v.71, pp.337-349.

Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacific Geol., v.8, pp.173-174.

Chattejee, N., Mazumdar, A.C., Bhattacharya, A. and Siakia, R.R. (2002) Neoproterozoic highly fractionated I-type granitoids of Shillong Plateau, Meghalaya, Northeast India: geochemical constraints on their petrogenesis. Acta Geochim., v.40, pp.51-66.

Chatterjee, N., Bhattacharya, A., Duarah, B. P. and Mazumdar, A. C. (2011) Late Cambrian Reworking of Paleo-Mesoproterozoic Granulites in Shillong-Meghalaya Gneissic Complex (Northeast India): Evidence from PT Pseudosection Analysis and Monazite Chronology and Implications for East Gondwana Assembly. Jour. Geol., v.119(3), pp.311-330.

Clarke, D.B., Dorais, M., Barbarin, B., Barker, D., Cesare, B., Clarke, G., El Baghdadi Erdmann, S., Forster, H.J., Gaeta, M., Gottesmann, B., Jamieson, R. A., Kontak, D. J., Koller, F., Gomes, C. L., London, D., Morgan V I. G. B. Neves, L.J.P. F., Pattison, D.R.M., Pereira, Pichavant, M., Rapela, C.W., Renno,A. D., Richards, S., Roberts, M., Rottura, A., Saavedra, J., Sial, A.N., Toselli, A.J., Ugidos, J.M., Uher, P., Villaseca, C., Visona, D., Whitney, D. L., Williamson, B., and Woodard, H.H. (2005) Occurrence and origin of andalusite in peraluminous felsic igneous rocks. Jour. Petrol., v.46, pp.441-472.

Condie, K.C. (2016) Earth as an evolving planetary system; 3rd ed., 430p. Dahlquist, J.A., Galindo, C., Pankhurst, R.J., Rapela, C.W., Alsino, P.H., Saavedra, J. and Fanning, C.M. (2007) Magmatic evolution of the Penon Rosado Granite: petrogenesis of garnet bearing granitoids. Lithos, v.95, pp.177-207.

Dash, C.R. and Chatterjee, B. (1992) Geology of the Patharkhammah-Umpyrtha, East Khasi Hills district, Meghalaya. Geol. Surv. India Publ.v.125(4), pp.24-26.

De La Roche, H., Leterrier, J., Grandelaude, P. and Marchal, M. (1980) A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses-Its relation with current nomenclature. Chemical Geol., v.29(1-4), pp.183-210.

Deer, W.A., Howie, A. and Zussman, J. (1986) An introduction to rock-forming minerals. 17th Longman Ltd., v.528, pp.16.

Dodge, F.C.W., Smith, V.C. and Mays, R.E. (1969) Biotite from granitic rocks of the central Sierra Nevada batholiths, California. Jour. Petrol., v.120, pp.250-271.

Dwivedi, S.B. and Theunuo, K. (2011) Two pyroxene bearing Granulites from Patharkhang Shillong –Meghalaya Gneissic Complex (SMGC). Curr. Sci., v.100, pp.100-105.

Dymek, R.F.(1983) Titanium, aluminium and interlayer cation substitutions in biotite from high grade gneisses,West Greenland. Amer. Mineral.,v .68, pp.880-899.

Egal, E., Thieblemont, D., Lahondere, D., Guerrot, C., Costea, C.A., lliescu, D., Delor, C., Goujou, J.C., Lafon, J.M., Tegyey, M., Diabyand, S. and Kolie, P. (2002) Late Eburnean granitization and tectonics along the western and north western margin of the Archean Kenema-Man domain (Guinea,West African Craton ). Precambrian Res., v.117, pp.57-84.

Elkins, L.T. and Grove, T.L. (1990) Ternary feldspar experiments and thermodynamic models. Amer. Mineral., v.75, pp.544-559.

Evans, P. (1964) The tectonic framework of Assam. Jour. Geol. Soc. India, v.5, pp.80-96.

Finch, A.A., Parsons, I. and Mingard, S.C.(1995) Biotite as indicator of fluorine fugacities in late stage magmatic fluids: the Garder province of south Greenland. Jour. Petrol., v.36(6), pp.1701-1728.

Forbes, W.C. and Flower, M.F.J.(1974) Phase relations of titan-phlogopite K2Mg4TiAl2Si6O20(OH)4: a refractory phase in the upper mantle? Earth Planet. Sci. Lett., v.22(1), pp.60-66.

Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A geochemical classification for granitic rocks. Jour. Petrol., v.42, pp.2033-2048.

Garrels, R.M. and Mackenzie, F.T. (1971) Evolution of Sedimentary rocks, W.W. Norton & Co., New York, 394p.

Ghiroso, M.S. (1984) Activity/composition relations in the ternary feldspar. Contrib. Mineral. Petrol., v.87(3), pp.282-296.

Ghosh, S., Chakraborty, S., Bhalla J.K., Paul, D.K., Sarkar, A., Bishui, P.K. and Gupta, S.N. (1991) Geochronology and geochemistry of granite plutons from East Khasi Hills, Meghalaya. Jour. Geol. Soc. India, v.37, pp.331-342.

Ghosh, S., Chakraborty, S., Paul, D.K., Bhalla, J.K., Bishui, P.K. and Gupta, S.N. (1994a) New Rb-Sr isotopic ages and geochemistry of granitoids from Meghalaya and their significance in middle to late Proterozoic crustal evolution. Indian Minerals, v.48, pp.33-44.

Ghosh, S., Fallic, A.E., Paul, D.K. and Potts, P.J. (2005) Geochemistry and origin of Neoproterozoic granitoids of Meghalaya, Northeast India: Implicatins for linkage with amalgamation of Gondwana supercontinent. Gondwana Res., v.8, pp.421-432.

Glazner, A.F. and Johnson, B.R. (2013) Late crystallisation of K-feldspar and the paradox of megacystis granites. Contrib. Mineral. Petrol., v.166, pp.777-799.

Guidotti, C.V., Cheney, J.T. and Guggenheim, S. (1977) Distribution of Ti between coexisting phases between muscovite and biotite in politic schists of northwestern Maine. Amer. Mineral., v.62, pp.438-448.

Guidotti, C.V., Cheney, J. and Henry, D.J. (1988) Compositional variation of biotite as a function of metamorphic reactions and mineral assemblage in the politic schists of western Maine. Amer. Jour. Sci., v.288, pp.270-292.

Harris N.B.W., Pearce, J.A. and Tindle, A.G. (1986). Geochemical characteristics of collision zone magmatism.-In: Coward, M.P. & Ries, A.C.(Eds);Collision tectonics –Geol. Soc. Lond. Spec. Publ. v. 9, pp. 67-81.

Henry, D.J., Guidotti, C.V. and Thomson, J.A. (2005) The Ti saturation surface for low to medium pressure metapelitic biotite: Implications for geothermometry and Ti substitution mechanism. Amer. Mineral., v.90, pp.316-328.

Henry, D.J. and Guidotti,C.V. (2002) Ti in biotite from metapelitic rocks: Temperature effects,crystallochemical controls and petrologic application. Amer. Mineral., v.87, pp.375-382.

Heselton, H.T., Jr., Hovis, G.L., Hemmingway, B.S., Robie, R.A. (1983) Calorimetric investigation of excess entropy of mixing in albite–sanidine solid solutions:lack of evidence for Na, K short range order and implications for two feldspar thermometry. Amer. Mineral., v.68, pp.398-413.

Ishihara, S. (1977) The magnetite series and ilmenite series granitic rocks. Mining Geol., v.27, pp.293-305.

Ishihara, S. (1981) The granitoid series and mineralization. Econ. Geol., 75th Anniver. volume, pp.458-484.

Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Cray, C.M., Whitehouse, M.J. (2007). Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, v.315(5814), pp.980-983.

Kumar, S. (1990) Petrochemistry and geochronology of pink granite from Songsak, East Garo Hills, Meghalaya. Jour. Geol. Soc. India, v.35, pp.277-279.

Kumar, S. (1998) Granitoids and their enclaves from east Khasi hills of Meghalaya: Petrogenetic and Geochemical reappraisal. Workshop on “Geodynamics and Natural Resources of North East India. Dibrugarh, Assam, Abstract volume, pp.17-18.

Kumar, S. (2009) Geology of North–east India: Frontiers for Research Activities. In: M.K. Mazumdar (Ed.), Geoscientific Issues of North-east India, Pragjyotish College, Guwahati, pp.103-111.

Kumar, S. Pieru, T., Rino, V. and Lyngooh, B.C. (2005) Microgranular enclaves in Neoproterozoiv granitoids of South Khasi Hills, Meghalaya Plateau, North East India; field evidences of interacting coeval mafic and felsic magmas. Jour. Geol. Soc. India, v.65, pp.629-633.

Kumar, S., Rino,V., Hayasaka, Y., Kimura, K., Raju, S., Terada, K. and Pathak, M. (2017) Contribution of Columbia and Gondwana Supercontinent assembly and growth related magmatism in the evolution of Meghalaya Plateau and Mikir Hills, Northeast India: constraints from U-PbSHRIMP zircon geochronology and geochemistry. Lithos, v.277, pp.356-377.

Labotka, T. C. (1983) Analysis of the compositional variations of biotite in politic hornfels from northeastern Minnesota. Amer. Mineral., v.68, pp.900-914.

Lal, R.K., Ackermand, D., Scifert, F. and Halder, S.K. (1978) Chemographic relationship in Sapphirine bearing rocks from Sonapahar, Assam, India. Mineral. Petrol., v.67, pp.169-187.

Luth,W.C., Jahns, R.H. and Tuttle, O.F. (1964) The granite system at pressures of 4 to 10 Kilo bars. Jour. Geophys. Res., v.69, pp.759-773.

Majumdar, D. and Dutta, P. (2016) Geodynamic evolution of a Pan-African granitoid of extended Dizo Valley in Karbi Hills, NE India: Evidence from Geochemistry and Isotope Geology. Jour. Asian Earth Sci., v.117, pp.256–268.

Mazumdar, S.K. (1976) A summary of the Precambrian Geology of Khasi Hills, Meghalaya. Geol. Surv. India Misc. Publ., v.23(2), pp.311-334. Mazumdar, S.K. (1986) The Precambrian framework of part of the Khasi Hills, Meghalaya. Rec. Geol. Surv. India, v.117, pp.1-59.

Mitra, S.K. (1998) Structure, sulphide mineralization and age of the Shillong group of rocks, Meghalaya. Abst. volume, M.S. Krishnan Commem. Nat. Sem., pp.118-119.

Mitra, S.K. (2005) Tectonic setting of the Meghalaya Plateau and it’s sulphide mineralization. Jour. Geol. Soc. India, v.65, pp.117-118.

Nachit, H., Razafimahefa, N., Stussi, J.M. and Caron, J.P. (1985) Composition chimique des Biotites et typologie magmatique des granitoids. C.R. Acad. Sci. Paris. Sr.II, v.301, pp.813-818.

Nandy, D.R. (2001) Geodynamics of northeastern India and the adjoining region. ABC Publication, Kolkata. 209p.

Neiva, A.M.R. (1981) Geochemistry of hybrid granitoid rocks and of their biotites from central northern Portugal and their petrogenesis. Lithos, v.14(2), pp.149-163.

O’Connor, J.T. (1965) A classification for quartz-rich igneous rock based on feldspar ratios. USGS Prof. Paper, 525B, B79-B84.

Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Jour. Petrol., v.25(4), pp.956-983.

Piwinski, A.J. (1973) Experimental studies of granitoids from the Central and Southern Coast Ranges, California. Tchermaks Mineral. Petrogr. Mitt., v.20, pp.107-130.

Putrika, K., Tepley, F. (Eds.) (2008) Minerals, Inclusions and Volcanic Processes, Rev. Min. Geochem., Mineralogical Soc. Amer., v.69, pp. 61- 120.

Ray, J., Saha, A., Ganguly, S., Balaram, V., Khishna, A.K. and Hazara, S. (2011) Geochemistry and Petrogenesis of Neoproterozoic Mylliem granitoids, Meghalaya Plateau, Northeastern India. Jour. Earth System Sci., v.120, pp.459-473.

Shabani, A., Lalonde, A.E., Whalen, J.B. (2003) Composition of biotite from granitic rocks of the Canadian Appalachian Orogen:A potential tectonomagmatic indicator? Canadian Mineral., v.41(6), pp.1381-1396.

Sheppard, S., Occipinti, S.A. and Taylor, I.M. (2003) The relationship between tectonism and composition of granitoid magmas, Yarlarweelor Gneiss complex, western Australlia. Lithos, v.66, pp.133-154.

Spear, J.A. (1981a) Petrology of cordierite and almandine bearing granitoid plutons of the southern Appalachian Piedmont. U.S.A. Canadian Mineral., v.19, pp.35-46.

Speer, J.A. (1984) Micas in Igneous Rocks, In: S.W. Bailey (Ed.), Micas: Reviews in Mineralogy. Mineral. Soc. Amer., v.13, pp.299-356.

Srivastava, R.K., Heman, L.M., Sinha, A.K., Shihua, S. (2004) Empalcement age and isotope geochemistry of Sung Valley alkaline-carbonatite complex, Shillong Plateau, northeastern India: Implications for primary carbonate melt and genesis of the associated silicate rocks. Lithos, v.81, pp.33-34.

Stormer, J.C., Jr. (1975) A Practical two –feldspar Geothermometer. Amer. Mineral., v.60, pp.667-674.

Sun, S.S. and McDonough, W.F. (1989) Chemical and isotope systematics of oceanic basalts: implication for mantle composition and processes. Geol. Soc. London Spec. Publ., v.42, pp.313-345.

Taylor, S.R. and McLennan, S.M. (1985) The continental crust:its composition and evolution. Blackwell Scientfic publication, Carlton, 312p.

Tonnes, R.G., Edgar, A.D. and Arima, M. (1985) A high pressure–high temperature study of TiO2 solubility in Mg rich phlogopite:implications to phlogopite chemistry. Geochim. Cosmochim. Acta, v.49, pp.2323-2329.

Tracy, R.J., Robinson, P. (1988) Silicate-Sulfide-Oxide-fluid reaction in granulite grade politic rocks,Central Massachusetts. Amer. Jour. Sci., v.288A, pp.45-74.

Tuttle, O.F. and Friedman, I. (1948) Liquid immiscibility in the system H2ONa 2O-SiO2. Amer. Chem. Soc. Jour., v.70, pp.919-926.

Tuttle, O.F., Bowen,N.L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Jour. Geol. Soc. Amer., v.74, pp.1-146.

Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., v.95, pp.407-419

Whitney, J.A., Stromer,J.C. (1977) Two-feldspar geothermometry, geobarometry in mesozonal granitic intrusions: Three examples from the Piedmont of Georgia. Contrib. Mineral. Petrol., v.63(1), pp.51-64.

Wones, D.R. and Eugster, H.P. (1965) Stability of biotite experiment theory and applications. Amer. Mineral., v.59(9), pp.1228.

Yin, A., Dubey, C.S., Webb, A.A., Grove, M., Gehrels, G.E. and Burgess, W.P. (2010a) Geologic correlation of the Himalayan orogeny and Indian craton (part I): Structural Geology, U-Pb zircon Geochronology and Tectonic Evolution of the Shillong Plateau and its Neighbouring Regions in NE India. Bull. Geol. Soc. Amer., v.122 (3/4), pp.336-359.

Zhao, J.H. and Zhou, M.F. (2009) Melting of newly formed mafic crust for the formation of Neoproterozoic I-type granite in the Hannan region, South China. Jour. Geol., v.117, pp.54-70.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.