The Effect of Discontinuity Orientation and Thickness of the Weathered Layer on the Stability of Lesser Himalayan Rock Slope

Authors

  • Department of Mining Engineering, IIT (BHU), Varanasi – 221 005
  • Department of Mining Engineering, IIT (BHU), Varanasi – 221 005
  • Department of Earth Sciences, IIT Bombay, Powai, Mumbai – 400 076

DOI:

https://doi.org/10.1007/s12594-022-1966-5

Keywords:

No Keywords

Abstract

The effect of discontinuity orientations and thickness of the weathered layer in the stability of jointed phyllite rock slopes of the Lesser Himalayan region was examined in this study. Numerical simulation was performed using the Rocscience RS2 V9 finite element software package. The performance of the slope was assessed for varying slope height, slope angle, weathered layer thickness, and orientation of the main joint and the cross joint set. The results indicate that the stability of rock slope depends on the relative orientation and distribution of the contained joint sets and the thickness of the weathered layer. Based on numerical simulation, the order of percentage reduction of a factor of safety (FOS) for the critical combination of joint sets has been identified. It was deduced that while keeping all the parameters constant, the effect of cross joint orientations is prominent in the case of shallow weathered layer and reduces as the thickness of the weathered layer increases. The effect of main joint orientations is prominent in the case of a deep weathered layer and reduces as the thickness of the weathered layer decreases. Analysis of variance (ANOVA) of the obtained result indicates that all the independent variables (slope height, slope angle, weathered layer thickness, main joint set, and cross joint set) are significantly predicting the dependent variable (FOS of rock slope) and the reducing order of significance is weathered layer thickness, slope angle, main joint orientation, slope height, and cross joint orientation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-02-28

How to Cite

Ray, A., Rai, R., & Singh, T. N. (2022). The Effect of Discontinuity Orientation and Thickness of the Weathered Layer on the Stability of Lesser Himalayan Rock Slope. Journal of Geological Society of India, 98(2), 260–270. https://doi.org/10.1007/s12594-022-1966-5

References

Abdaqadir, Z.K., Alshkane, Y.M. (2018) Physical and Mechanical Properties of Metamorphic Rocks. Jour. Garmian Univ., v.5, pp.160-173. doi:10.24271/garmian.334

Anbarasu, K., Gupta, S., Sengupta, A. (2009) Site-specific geological and geotechnical studies on the Lanta Khola landslide, North Sikkim Highway, India. Internat. Jour. Geotech. Eng., v.3, pp.361-376 doi:10.3328/ IJGE.2009.03.03.361-376

ASTM (2010) D7012 Standard test method for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures.

ASTM E132 - 04 Standard Test Method for Poisson’s Ratio at Room Temperature.

Bachmann, D., Bouissou, S., Chemenda, A. (2004) Influence of weathering and pre-existing large scale fractures on gravitational slope failure: insights from 3-D physical modelling. Natural Hazards: Earth Syst. Sci., v.4, pp.711-717. doi:10.5194/nhess-4-711-2004

Bartarya, S., Valdiya, K. (1989) Landslides and erosion in the catchment of the Gaula River, Kumaun Lesser Himalaya, India. Mountain Res. Develop., v.9, pp.405-419 doi:10.2307/3673588

Barton, N., Bandis, S. (1990) Review of predictive capabilities pf JRC-JCS model in engineering practice. In: N. Barton and O. Stephenson (Eds.), Rock Joints. Proc. Int. Symp on Rock Joints, Loen, Norway, pp.603-610

Barton, N., Lien, R., Lunde, J. (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech., v.6, pp.189-236 doi:10.1007/ BF01239496

Brideau, M-A., Yan, M., Stead, D. (2009) The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology, v.103, pp.30-49. doi:10.1016/j.geomorph. 2008.04.010

Carter, B.J., Lajtai, E.Z. (1992) Rock slope stability and distributed joint systems. Canadian Geotech. Jour., v.29, pp.53-60 doi:10.1139/t92-006

Chaurasia, A.K., Pandey, H., Nainwal, H., Singh, J., Tiwari, S. (2017) Stability analysis of rock slopes along Gangadarshan, Pauri, Garhwal, Uttarakhand Jour. Geol. Soc. India, v.89, pp.689-696. doi:10.1007/s12594-017-0680-1

Deere, D.U., Miller, R. (1966) Engineering classification and index properties for intact rock vol Tech Report. Air Force Weapons Lab., New Mexico, No. AFNL-TR. Illinois Univ. at Urbana Dept Of Civil Engineering.

Einstein, H., Veneziano, D., Baecher, G., O’Reilly, K. (1983) The effect of discontinuity persistence on rock slope stability. In: International journal of rock mechanics and mining sciences & geomechanics abstracts, v.5. Pergamon, pp.227-236. doi:10.1016/0148-9062(83)90003-7

El-Ramly, H., Morgenstern, N., Cruden, D. (2005) Probabilistic assessment of stability of a cut slope in residual soil. Geotechnique, v.55, pp.77-84 doi:10.1680/geot.2005.55.1.77

Ersöz, T., Topal, T. (2018) Assessment of rock slope stability with the effects of weathering and excavation by comparing deterministic methods and slope stability probability classification (SSPC). Environ. Earth Sci., v.77, pp.547 doi:10.1007/s12665-018-7728-4

Fereidooni, D. (2018) Influence of discontinuities and clay minerals in their filling materials on the instability of rock slopes. Geomech. Geoengg., v.13, pp.11-21 doi:10.1080/17486025.2017.1309080

Gerrard, J. (1994) The landslide hazard in the Himalayas: geological control and human action. In: Geomorphology and Natural Hazards. Elsevier, pp.221-230. doi:10.1016/B978-0-444-82012-9.50019-0

Ghosh, S., Günther, A., Carranza, E.J.M., van Westen, C.J., Jetten, V.G. (2010) Rock slope instability assessment using spatially distributed structural orientation data in Darjeeling Himalaya (India). Earth Surface Processes and Landforms, v.35, pp.1773-1792. doi:10.1002/esp.2017

Ghosh, S., Kumar, A., Bora, A. (2014) Analyzing the stability of a failing rock slope for suggesting suitable mitigation measure: a case study from the Theng rockslide, Sikkim Himalayas, India. Bull. Engg. Geol. Environ., v.73, pp.931-945 doi:10.1007/s10064-014-0586-8

Gupta, V., Tandon, R.S. (2015) Kinematic rockfall hazard assessment along a transportation corridor in the Upper Alaknanda valley, Garhwal Himalaya, India. Bull. Engg. Geol. Environ., v.74, pp.315-326 doi:10.1007/s10064- 014-0623-7

Hencher, S. (1987) The implications of joints and structures for slope stability Slope Stability. John Wiley, Ch 5, pp.145-186.

Israil, M., Pachauri, A. (2003) Geophysical characterization of a landslide site in the Himalayan foothill region. Jour. Asian Earth Sci., v.22, pp.253-263 doi:10.1016/S1367-9120(03)00063-4

ISRM I (1978) Suggested methods for the quantitative description of discontinuities in rock masses Commission on the standardization of Laboratory and Field Tests in Rock Mechanics, ISRM ISRM UR, Hudson, J. (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006 Kozan, Ankara

Jiang, M., Jiang, T., Crosta, G.B., Shi, Z., Chen, H., Zhang, N. (2015) Modeling failure of jointed rock slope with two main joint sets using a novel DEM bond contact model. Engg. Geol., v.193, pp.79-96. doi:10.1016/j.enggeo.2015.04.013

Johari, A., Lari, A.M. (2017) System probabilistic model of rock slope stability considering correlated failure modes. Computers and Geotechnics, v.81, pp.26-38 doi:10.1016/j.compgeo.2016.07.010

Kim, B., Cai, M., Kaiser, P., Yang, H. (2007) Estimation of block sizes for rock masses with non-persistent joints. Rock Mechanics and Rock Engineering, v.40, pp.169 doi:10.1007/s00603-006-0093-8

Kothyari, G.C., Pant, P., Luirei, K. (2012) Landslides and neotectonic activities in the main boundary thrust (MBT) zone: Southeastern Kumaun, Uttarakhand. Jour. Geol. Soc. India, v.80, pp.101-110. doi:10.1007/ s12594-012-0123-y

Kumar, R., Anbalagan, R. (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. Jour. Geol. Soc. India, v.87, pp.271-286. doi:10.1007/ s12594-016-0395-8

Kumar, S., Kumar, K., Dogra, N. (2017) Rock mass classification and assessment of stability of critical slopes on national highway-22 in Himachal Pradesh. Jour. Geol. Soc. India, v.89, pp.407-412. doi:10.1007/ s12594-017-0622-y

Latha, G.M., Garaga, A. (2010a) Stability analysis of a rock slope in Himalayas. Geomechanics and Engineering, v.2, pp.125-140 doi:10.12989/ gae.2010.2.2.125

Latha, G.M., Garaga, A. (2010b) Seismic stability analysis of a Himalayan rock slope. Rock Mech. Rock Engg., v.43, pp.831-843 doi:10.1007/ s00603-010-0088-3

Li, Y., Oh, J., Mitra, R., Canbulat, I., Hebblewhite, B. (2019) Applicability of a joint constitutive model: correlation with field observations International Jour. Geotech. Engg., v.13, pp.299-315. doi::10.1080/19386362.2017. 1344367

Lie, C., Hack, H. (2015) The effect of discontinuity orientation on the stability of rock masses. In: Proceedings of Slope 2015: Advancement of research, practice and integrated solutions on landslides. 27-30 September 2015, Bali, Indonesia.

Little, A. (1969) The engineering classification of residual torpical soils. In: Soil Mech & Fdn Eng Conf Proc/Mexico.

Mahanta, B., Singh, H., Singh, P., Kainthola, A., Singh, T. (2016) Stability analysis of potential failure zones along NH-305, India. Natural Hazards, v.83, pp.1341-1357. doi:10.1007/s11069-016-2396-8

Mehrotra, G., Sarkar, S., Kanungo, D., Mahadevaiah, K. (1996) Terrain analysis and spatial assessment of landslide hazards in parts of Sikkim Himalaya Jour. Geol. Soc. India, v.47, pp.491-498.

Pain, A., Kanungo, D., Sarkar, S. (2014) Rock slope stability assessment using finite element based modelling–examples from the Indian Himalayas. Geomechanics and Geoengg., v.9, pp.215-230. doi:10.1080/17486025. 2014.883465

Pal, S., Kaynia, A.M., Bhasin, R.K., Paul, D. (2012) Earthquake stability analysis of rock slopes: a case study. Rock Mech. Rock Engg., v.45, pp.205-215. doi:10.1007/s00603-011-0145-6

Park, H-J., West, T.R., Woo, I. (2005) Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Interstate Highway 40, Western North Carolina, USA. Engg. Geol., v.79, pp.230-250 doi:10.1016/j.enggeo.2005.02.001

Pathak, S., Nilsen, B. (2004) Probabilistic rock slope stability analysis for Himalayan conditions. Bull. Engg. Geol. Environ., v.63, pp.25-32. doi:10.1007/s10064-003-0226-1

Pathak, S., Poudel, R.K., Kansakar, B.R. (2006) Application of Probabilistic Approach in Rock Slope Stability Analysis–Experience from Nepal Disaster Mitig Debris Flows Slope Fail. Landslides, v.2, pp.797-802

Pradhan, S., Vishal, V., Singh, T. (2018) Finite element modelling of landslide prone slopes around Rudraprayag and Agastyamuni in Uttarakhand Himalayan terrain. Natural Hazards, v.94, pp.181-200. doi:10.1007/s11069-018-3381-1

Ray, A., Kumar, R.C., Bharati, A.K., Rai, R., Singh, T. (2019) Hazard Chart for Identification of Potential Landslide Due To the Presence of Residual Soil in the Himalayas. Indian Geotech. Jour., pp.1-16. doi:10.1007/s40098-019-00401-6

Regmi, A.D., Yoshida, K., Dhital, M.R., Pradhan, B. (2014) Weathering and mineralogical variation in gneissic rocks and their effect in Sangrumba Landslide, East Nepal. Environ, Earth Sci., v.71, pp.2711-2727. doi:10.1007/s12665-013-2649-8

Sarkar, K., Singh, A.K., Niyogi, A., Behera, P.K., Verma, A., Singh, T. (2016) The assessment of slope stability along NH-22 in Rampur-Jhakri Area, Himachal Pradesh. Jour. Geol. Soc. India, v.88, pp.387-393 doi:10.1007/s12594-016-0500-z

Shang, J., West, L., Hencher, S., Zhao, Z. (2018) Geological discontinuity persistence: Implications and quantification. Engg. Geol., v.241, pp.41-54. doi:10.1016/j.enggeo.2018.05.010

Shukla, S., Hossain, M. (2011) Analytical expression for factor of safety of an anchored rock slope against plane failure. Internat. Jour. Geotech. Engg., v.5, pp.181-187 doi:10.3328/IJGE.2011.05.02.181-187

Siddique, T., Pradhan, S., Vishal, V., Mondal, M., Singh, T. (2017) Stability assessment of Himalayan road cut slopes along National Highway 58, India. Environ. Earth Sci., v.76, pp.759. doi:10.1007/s12665-017-7091-x

Siddque, T., Pradhan, S. (2018) Stability and sensitivity analysis of Himalayan road cut debris slopes: an investigation along NH-58, India. Natural

Hazards, v.93, pp.577-600. doi:10.1007/s11069-018-3317-9

Singh, P., Kainthola, A., Singh, T. (2015) Risk analysis of High Hill Slopes – a case history. Jour. Rock Mech. Tunnel Tech., v.21, pp.101-113

Singh, R., Umrao, R., Singh, T. (2014) Stability evaluation of road-cut slopes in the Lesser Himalaya of Uttarakhand, India: conventional and numerical approaches. Bull. Engg. Geol. Environ., v.73, pp.845-857 doi:10.1007/s10064-013-0532-1

Singh, R., Umrao, R.K., Singh, T. (2017) Hill slope stability analysis using two and three dimensions analysis: A comparative study. Jour. Geol. Soc. India, v.89, pp.295-302 doi:10.1007/s12594-017-0602-2

Starzec, P., Andersson, J. (2002) Probabilistic predictions regarding key blocks using stochastic discrete fracture networks–example from a rock cavern in south-east Sweden. Bull. Engg. Geol. Environ., v.61, pp.363-378. doi:10.1007/s10064-002-0154-5

Stead, D., Wolter, A. (2015) A critical review of rock slope failure mechanisms: The importance of structural geology. Jour. Struc. Geol., v.74, pp.1-23. doi:10.1016/j.jsg.2015.02.002

Umrao, R., Singh, R., Ahmad, M., Singh, T.N. (2011) Stability analysis of cut slopes using continuous slope mass rating and kinematic analysis in Rudraprayag district, Uttarakhand. Geomaterials, v.1. doi:10.4236/gm.2011.13012

Zhang, L., Einstein, H. (2000) Estimating the intensity of rock discontinuities. Internat. Jour. Rock Mech. Mining Sci., v.37, pp.819-837 doi:10.1016/S1365-1609(00)00022-8

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>