Geomorphic Imprints of Active Tectonics of the Bikaner-Nagaur Petroliferous Rift Basin and its Surroundings (Western Rajasthan, India)

Authors

  • Department of Geography, Presidency University, 86/1 College Street, Kolkata - 700 073
  • Department of Geography, Presidency University, 86/1 College Street, Kolkata - 700 073
  • Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai - 400 076
  • Department of Geology, K. J. Somaiya College of Science and Commerce, Vidyanagar, Vidya Vihar East, Ghatkopar East, Mumbai - 400 077

Keywords:

No Keywords.

Abstract

Geology of sedimentary rift-basins require strong geomorphic input for a proper interpretation of active tectonics. Rift-related sedimentation took place in western Rajasthan of the Indian shield, which includes the Bikaner-Nagaur basin (BNB) and a few other adjacent basins. The sedimentation history of the BNB includes Proterozoic, Cambrian, Permo-Carboniferous and from Paleocene to the Recent. This study analyses river profiles with the best-fit curve (R2) model for the BNB and the surrounding regions. The research shows that the watershed 3 within the study area is most active tectonically, through which multiple faults and lineaments pass. Hypsometric Curves (HCs) of watersheds 1, 2 and 3 indicate that these watersheds are tectonically active. This inference is based on the concave profiles of HCs at the head, and convex profiles of HCs at the body and toe sections. Clustering of sixty segments (S) of the considered rivers based on linear-scale morphometric parameters, e.g., sinuosity index (SI), stream length gradient index (SL) and concavity (θ) enabled segment-wise comparison of river profiles with similar values. These segments were compared pair-wise, and Euclidean-based dissimilarity (dR) values were calculated between each such pair. The findings too imply that tectonic activeness exists in parts of watersheds 1, 2 and 3. The channel flow lines are controlled by faults/lineaments as per the micro-scale examination of the drainage network and faults/lineaments analysis. Under structural control, nine major geomorphic units emerged with distinct erosional surfaces, denudational hillocks, dissected hills and inselbergs. Detailed geomorphic map with micro-scale studies revealed a slope retreat process that resulted in landforms viz., pediment, pediment slope and active flood plains.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-03-01

How to Cite

Biswas, M., Raha, A., Mukherjee, S., & Kotak, V. S. (2024). Geomorphic Imprints of Active Tectonics of the Bikaner-Nagaur Petroliferous Rift Basin and its Surroundings (Western Rajasthan, India). Journal of Geological Society of India, 100(3), 377–390. Retrieved from http://www.geosocindia.com/index.php/jgsi/article/view/173844

References

Agar, R.A. (1987) The Najd fault system revisited; a two-way strike-slip orogen in the Saudi Arabian Shield. Jour. Struct. Geol., v.9, pp.41–48, https://doi.org/ 10.1016/0191-8141(87)90042-3.

Aiken, S.J. and Brierley, G.J. (2013) Analysis of longitudinal profiles along the eastern margin of the Qinghai-Tibetan Plateau, Jour. Mountain Sci., v.10(4), pp.643–657, https://doi.org/10.1007/s11629-013-2814-2.

Al-Husseini, M.I. (2000) Origin of the Arabian Plate structures: Amar collision and Najd rift. Geo Arabia., v.5(4), pp.527-542.

Ambili, V. and Narayana, A.C. (2014) Tectonic effects on the longitudinal profiles of the Chaliyar River and its tributaries, Southwest India, Geomorph., v.217, pp.37–47, https://doi.org/10.1016/j.geomorph.2014.04.013.

Anand, A.K. and Pradhan, S.P. (2019) Assessment of active tectonics from geomorphic indices and morphometric parameters in part of Ganga basin. Jour. Mountain Sci., v.16(8), pp.1943–1961. https://doi.org/10.1007/s11629-018-5172-2.

Akinwumiju, A. S. (2021) Characterization of Hypsometric Curves using ArcGIS and R. Programming Language. IFE Res. Publ. Geography, v.19(1), pp.86-101 https://irpg.oauife.edu.ng/index.php/irpg.2021.

Bakliwal, P.C. and Ramasamy, S.M. (1987) Lineament Fabric of Rajasthan and Gujarat, India. Rec. Geol. Surv. India, v.113(7), pp.54-64,.

Bajracharya, P. and Jain, S. (2022) Hydrologic similarity based on width function and hypsometry: An unsupervised learning approach. Computers and Geosciences, v.163, 105097, https://doi.org/10.1016/j.cageo.2022.105097.

Bhatt, S.C., Singh, R., Ansari, M.A. and Bhatt, S. (2020) Quantitative Morphometric and Morphotectonic Analysis of Pahuj Catchment Basin, Central India. Jour. Geol. Soc. India, v.96(5), pp.513-520. https://doi.org/10.1007/s12594-020-1590-1.

Bhattarai, I. (2017) Quantitative River Profile Analysis to Investigate Exhumation of the Siwalik Foreland Basin, Nepalese Himalaya. Masters Theses & Specialist Projects. Paper 1932. http://digitalcommons.wku.edu/theses/1932.

Bhola, A.M., Sharma, B.K. and Ghosh, S.K. (2004) Folds in multilayered rocks of Proterozoic age, Rajasthan, India. Jour. Earth Syst. Sci., v.113, pp.299-311.

Biswas, A., Das Majumdar, D. and Banerjee, S. (2014) Morphometry governs the dynamics of a drainage basin: Analysis and implications. Geography Jour., pp.1–14, https://doi.org/10.1155/2014/927176.

Biswas, M., Gogoi, M.P., Mondal, B., Sivasankar, T., Mukherjee, S. and Dasgupta, S. (2022a) Geomorphic assessment of active tectonics in Jaisalmer basin (western Rajasthan, India). Geocarto Internat. https://doi.org/ 10.1080/10106049.2022.2066726.

Biswas, M., Puniya, M.K., Gogoi, M.P., Dasgupta, S., Mukherjee, S. and Kar, N.R. (2022b) Morphotectonic analysis of petroliferous Barmer rift basin (Rajasthan, India). Jour. Earth Syst. Sci., v.131, pp.5-6.

Bhowmick, P.K. (2008) Phanerozoic petroliferous basin of India. Glimpses of Geosci. Res. India, pp.253–268,.

Bhatt, S.C., Singh, R., Ansari, M.A. and Bhatt, S. (2020) Quantitative morphometric and morphotectonic analysis of Pahuj Catchment Basin, Central India, Jour. Geol. Soc. India, v.96(5), pp.513–520. https://doi.org/10.1007/s12594-020-1590-1,

Bragança, M.T., Barros, L.F. and Oliveira, D. de (2021) Using morphometric and geomorphic indices to assess western São Francisco Craton neotectonic traces. Geography Department University of Sao Paulo, v.41, https://doi.org/10.11606/eissn.2236-2878.rdg.2021.184588.

Chitsaz, N. and Malekian, A. (2016) Development of a risk-based multi-criteria approach for watershed prioritization with consideration of soil erosion alleviation (Case study of iran), Environ. Earth Sci., v.75(22), https://doi.org/10.1007/s12665-016-6256-3.

Chen, C.Y. and Willett, S.D. (2016) Graphical methods of river profile analysis to unravel drainage area change, uplift and erodibility contrasts in the Central Range of Taiwan. Earth Surf. Process Landf., v.41(15), pp.2223-2238.

Clubb, F.J., Bookhagen, B. and Rheinwalt, A. (2019) Clustering river profiles to classify geomorphic domains. Jour. Geophys. Res. Earth Surf., v.124(6), pp.1417-1439.

Cyr, A.J., Granger, D.E., Olivetti, V. and Molin, P. (2014) Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness index. Geomorph., v.209, pp.27-38.

Das, A.R. (1988) Geometry of the superposed deformation in the Delhi Supergroup of rocks, north of Jaipur, Rajasthan.In: A.B. Roy (ed), Precambrian of the Aravalli Mountain, Rajasthan, India. Jour. Geol. Soc. India, v.7, pp.247-266.

Duvall, A., Kirby, E. and Burbank, D. (2004) Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. Jour. Geophys. Res. Earth. Surf., v.109(F3), pp.118.

Eltahan, A.M., Abd Elhamid, A.M. and Abdelaziz, S.M. (2021) Multivariate statistical analysis of geomorphological parameters for Sinai Peninsula, Alexandria Eng. Jour., v.60(1), pp.1389–1402, https://doi.org/10.1016/j.aej.2020.10.059.

Farooq, U., Chetia, R., Mathews, R., Srivastav, S., Singh, B. and Singh, V. (2019) Palaeodepositonal conditions and hydrocarbon source characteristics of lignites from Bikaner-Nagaur Basin (Rajasthan) western India based on organic petrographic studies. In: Naj Aziz and Bob Kininmonth (Eds.), Proceedings of the 2019 Coal operators conference, Mining Engineering, University of Wollongong, v.18-20, pp.352-367.

Fenta, A.A., Yasuda, H., Shimizu, K., Haregeweyn, N. and Woldearegay, K. (2017) Quantitative analysis and implications of drainage morphometry of the Agula watershed in the semi-arid northern Ethiopia, Appl. Water Sci., v.7(7),pp. 3825–3840. https://doi.org/10.1007/s13201-017-0534-4.

Hack, J.T. (1957) Studies of longitudinal stream profiles in Virginia and Maryland. USGS Prof. Paper, https://doi.org/10.3133/pp294b.

Hack, J.T. (1973) Stream-profile analysis and stream-gradient index. Jour. Res. US Geol. Surv., v.1(4), pp.421-429.

Han, Z., Li, X., Wang, N., Chen, G., Wang, X. and Lu, H. (2017) Application of river longitudinal profile morphometrics to reveal the uplift of Lushan Mountain. Acta Geol. Sin English Edition, v.91(5), pp.1644-1652.

Gandhi, D., Prajapati, P., Prizomwala, S. P., Bhatt, N. and Rastogi, B. K. (2015) Delineating the spatial variability in neotectonic activity along the southwestern Saurashtra, Western India, Zeits. für Geomorph., v.59(1), pp.21–36, https://doi.org/10.1127/0372-8854/2014/0122.

George, B.G. (2019) Geology of the Neoproterozoic – early Cambrian Marwar Supergroup, Rajasthan: A synthesis, Proc. Indian Nat. Sci. Acad., https://doi.org/10.16943/ptinsa/2019/49712.

Kajale, M.D. and Deotare, B.C. (1997) Late Quaternary environmental studies on salt lakes in western Rajasthan, India: a summarised view. Jour. Quaternary Sci., v.12(5), pp.405-412.

Keller, E.A. and Pinter, N. (1996) Active tectonics (Vol. 338). Upper Saddle River, NJ: Prentice Hall.

Keller, E. and Pinter, N. (2002) Active Tectonics Earthquakes, Uplift and Landscape. 2nd ed. Upper Saddle River, New Jersey: Prentice Hall,.

Karymbalis, E., Ferentinou, M. and Giles, P.T. (2016) Use of morphometric variables and self-organizing maps to identify clusters of alluvial fans and catchments in the North Peloponnese, Greece. In: Ventra, D. and Clarke, L.E. (Eds.), Geol. Soc., London, Spec. Publ., v.440, pp.45–64, doi:10.1144/sp440.7.

Kale, V.S., Sengupta, S., Achyuthan, H. and Jaiswal, M.K. (2014) Tectonic controls upon Kaveri River drainage, cratonic peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records, Geomorphology, v.227, pp.153–165, https://doi.org/10.1016/j.geomorph.2013.07.027.

Kothyari, G.C. and Rastogi, B.K. (201) Tectonic control on drainage network evolution in the upper Narmada Valley: Implication to neotectonics. Geography Jour., v.3, pp.1–9. https://doi.org/10.1155/2013/325808, 2013.

Kothyari, G.C., Singh, A.P., Mishra, S., Kandregula, R.S., Chaudhary, I. and Chauhan, G. (2018) Evolution of drainage in response to brittle - ductile dynamics and surface processes in Kachchh Rift Basin, Western India, Tectonics - Problems of Regional Settings. https://doi.org/10.5772/intechopen.73653.

Kirby, E. and Whipple, K. (2001) Quantifying differential rock-uplift rates via stream profile analysis. Geology, v.29(5), pp.415-418.

Kirby, E. and Whipple, K.X. (2012) Expression of active tectonics in erosional landscapes. Jour. Struct. Geol., v.44, pp.54-75.

Kumar, H. and Pandit, M. (2020) Recurrent seismicity in Rajasthan State in the tectonically table NW Indian Craton. Iranian Jour. Earth Sci., v.12(1), pp.1-9.

Kumar, V., Chandra, R. and Rastogi, S. (2005) Geology and evolution of Nagaur-Ganganagar Basin with special reference to salt and potash mineralization. Geol. Surv. India Spec. Publ., v.62, pp.1-151.

Lee, C. and Tsai, L. (2009) A quantitative analysis for geomorphic indices of longitudinal river profile: a case study of the Choushui River, Central Taiwan. Environ. Earth Sci, v.59(7), pp.1549-1558.

Leopold, L., Wolman, M. and Miller, J. (1964) Fluvial processes in geomorphology. San Francisco: W.H. Freeman.

Lu ning, S., craig, J., loydell, D. K., S¡torch, P. & Fitches, W. R. (2000) Lowermost Silurian ‘hotshales’ in North Africa and Arabia: regional distribution and depositional model. Earth Sci. Rev., v.49, pp.121–200,.

Mandal, A., Saha, D. and Kumar, A. (2021) Structural analysis and seismic stratigraphy for delineation of Neoproterozoic-Cambrian petroleum system in central and eastern part of Bikaner–Nagaur basin, India. Jour. Pet. Explor. Prod. Tech., pp.1-17.

Marple, R.T. and Talwani, P. (2000) Evidence for a buried fault system in the Coastal Plain of the Carolinas and Virginia—implications for neotectonics in the southeaster United States. Geol. Soc. Amer Bull,, v.112(2), pp.200-220.

Martins, A.A., Cabral, J., Cunha, P.P., Stokes, M., Borges, J., Caldeira, B. and Martins, A.C. (2017) Tectonic and lithological controls on fluvial landscape development in central-eastern Portugal: Insights from long profile tributary stream analyses. Geomorphology, v.276, pp.144-163,.

Mathews, R.P., Chetia, R., Agrawal, S., Singh, B.D., Singh, P. K., Singh, V.P. and Singh, A. (2020) Early Palaeogene climate variability based on n-alkane and stable carbon isotopic composition evidenced from the Barsingsar Lignite-bearing sequence of Rajasthan. Jour. Geol. Soc. India, v.95(3), pp.255-262.

Mohamed, E.K. (2020) Watershed delineation and morphometric analysis using remote sensing and GIS mapping techniques in Qena-Safaga-Bir Queh, Central Eastern Desert. Internat. Jour. Water Resour. Environ. Eng., v.12(2), pp.22–46., https://doi.org/10.5897/ijwree2019.0896.

Patel, P.P., Guha, S., Das, D. and Bose, M. (2022) Spatial variability of topographic attributes and channel morphological characteristics in the ladakh trans-himalayas and their tectonic and structural controls. Himalayan Neotectonics and Channel Evolution, pp.67–110, https://doi.org/10.1007/978-3-030-95435-2_3, 2022.

Pollastro, R.M. (1999) Ghaba Salt Basin Province and Fahud Salt Basin Province, Oman: Jour. Pet. Geol., (25). US Department of the Interior, USGS.

Prasad, B., Asher, R. and Borgohai, B. (2010) Late Neoproterozoic (Ediacaran)-Early Paleozoic (Cambrian) Acritarchs from the Marwar Supergroup, Bikaner-Nagaur Basin, Rajasthan. Jour. Geol. Soc. India, v.75(2), pp.415-431.

Prieto-Amparán J.A., Pinedo-Alvarez A., Vázquez-Quintero G., Valles-Aragón M.C., Rascón-Ramos A.E., Martinez-Salvador M, and Villarreal-Guerrero F. (2019) A multivariate geomorphometric approach to prioritize erosion-prone watersheds. Sustainability, v.11(18), 5140, https://doi.org/10.3390/su11185140.

Pérez-Peña, J.V., Azañón, J.M. and Azor, A. (2009) CalHypso: AnArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Comput Geosci, v.35, 1214-1223.

Prakash, K., Mohanty, T., Pati, J. K., Singh, S. and Chaubey, K. (2016) Morphotectonics of the Jamini River Basin, Bundelkhand craton, Central India; using remote sensing and GIS technique. Appl. Water Sci., v.7(7), pp.3767–3782. https://doi.org/10.1007/s13201-016-0524-y.

Raju, S.V., Mathur, N. and Sarmah, M.K. (2014) Geochemical characterization of Neoproterozoic heavy oil from Rajasthan, India: implications for future exploration of hydrocarbons. Curr. Sci., pp.1298-1305.

Ram, J. (2015) Neoproterozoic successions in Peninsular India and their hydrocarbon prospectively. In: Bhat, G. M., Craig, J., Thurow, J. W., Thusu, B. & Cozzi, A. (Eds.), Geology and Hydrocarbon Potential of Neoproterozoic–Cambrian Basins in Asia. Geol. Soc. London, Spec. Publ., v.366, pp.59–73.

Rajak, P.K., Singh, V.K., Singh, P.K., Singh, M.P. and Singh, A.K. (2019) Environment of paleomire of lignite seams of Bikaner-Nagaur basin, Rajasthan (W. India): petrological implications. Internat. Jour. Oil Gas Coal Tech., v.22(2), pp.218-245.

Rasheed, M.A., Lakshmi, M., Srinu, D. and Dayal, A.M. (2011) Bacteria as indicators for finding oil and gas reservoirs: A case study of the Bikaner-Nagaur Basin, Rajasthan, India. Pet. Sci., v.8(3), pp.264-268.

Roy, A.B. (2006) Seismicity in the Peninsular Indian Shield: some geological considerations. Curr. Sci., pp.456-463,.

Sakthivel, R., Jawahar Raj, N., Sivasankar, V., Akhila, P. and Omine, K. (2019) Geo-spatial technique-based approach on drainage morphometric analysis at Kalrayan Hills, Tamil Nadu, India, Appl. Water Sci., v.9(1), https://doi.org/10.1007/s13201-019-0899-7.

Seeber, L. and Gornitz, V. (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics, v.92(4), pp.335-367.

Siahaan, M. R., Sukiyah, E., Sulaksana, N. and Harcwat Haryanto, A.D. (2022) Assessment of Active Tectonic from Morphometric Properties in Krueng Raya Watershed, Aceh Besar, Indonesia. Eng. Lett., v.30(3), EL-3--3-20.

Singh, A., Shivanna, M., Mathews, R.P., Singh, B.D., Singh, H., Singh, V.P. and Dutta, S. (2017) Paleoenvironment of Eocene lignite bearing succession from Bikaner-Nagaur Basin western India: Organic petrography, palynology, palynofacies and geochemistry. Int. Jour. Coal Geol., v.181, pp.87-102.

Singh, A.K., Hakimi, M.H., Kumar, A., Ahmed, A., Abidin, N.S.Z., Kinawy, M., Mahdy, O.E. and Lashin, A. (2020) Geochemical and organic petrographic characteristics of high bituminous shales from Gurha mine in Rajasthan, NW India. Sci. Rep, v.10(1), pp.1-19.

Sinha, R. and Raymahashay, B.C. (2004) Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajasthan, India. Sediment. Geol., v.166(1-2), pp.59-71.

Solanki, T., Solanki, P. M., Makwana, N., Prizomwala, S. and Kothyari, G. C. (2021) Geomorphic response to neotectonic instability in the Deccan Volcanic Province, Shetrunji River, Western India: Insights from Quantitative Geomorphology. Quaternary Internat., v.575-576, pp.96–110, https://doi.org/10.1016/j.quaint.2020.06.015.

Stepanècikova, P., Stemberk, J. and Vilimek, V. (2008) Neotectonic movements in the East Sudeten Mountains and monitoring of recent fault displacements (Czech Republic). Geomorphology, v.102, pp.68-80.

Strahler, A.N. (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Amer. Bull., v.63(11), pp.1117-1142.

Whipple, K. (2004) Bedrock rivers and the geomorphology of active orogens. Ann. Rev. Earth Planet. Sci., v.32, pp.151-185.

Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E. and Roberts, G.P. (2007) Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates. Geology, v.35(2), pp.103-106.

Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., Sheehan, D. and Willett, S.D. (2006) Tectonics from topography: Procedures, promise, and pitfalls. Special Papers, Geol. Soc. Amer., v.398, pp.55.

Yasin, Q., Baklouti, S., Sohail, G.M., Asif, M. and Xufei, G. (2022) Evaluation of Neoproterozoic source rock potential in SE Pakistan and adjacent Bikaner–Nagaur Basin, India. Sci. Rep., v.12(1), 11102.

Zaprowski, B.J., Pazzaglia, F.J. and Evenson, E.B. (2005) Climatic influences on profile concavity and river incision. Jour. Geophys. Res. Earth Surf., v.110(F3), pp.1-19.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.