Assessing the Influence of Multiresolution DEMs on Soil Loss Prediction using the RUSLE Model in Central Morocco

Authors

  • Hassan First University of Settat, Faculty of Sciences and Techniques, BNRNE Laboratory, Settat
  • National Institute for Agricultural Research, CRRA, Tadla
  • Hassan First University of Settat, Faculty of Sciences and Techniques, BNRNE Laboratory, Settat
  • Hassan First University of Settat, Faculty of Sciences and Techniques, CAE Laboratory, Settat
  • Hassan First University of Settat, Faculty of Sciences and Techniques, BNRNE Laboratory, Settat

Keywords:

No Keywords.

Abstract

The topography plays a significant role in determining the rate of soil loss. The Digital Elevation Model (DEM) retrieved from earth observation products can be used to calculate the slope length and steepness, which are important factors in the Revised Universal Soil Loss Equation (RUSLE) used to estimate soil erosion. In the present study, the effect of two DEM resolutions (30m and 90 m) on RUSLE model results was assessed and used to quantify the rate of soil loss in Settat province (Morocco), specifically in certain abandoned quarries. As a result, DEM-30 and DEM-90 soil erosion rates vary from 0 to 282.77 t.ha-1.yr-1 and 0 to 13.79 t.ha-1.yr-1, respectively. At the quarry level, the abandoned quarries showed soil loss rates ranging from 0 to 7.92 t.ha-1.yr-1 for DEM-30. Contrary to this, the soil loss rate for DEM-90 data was zero. To summarize, for more relevant and detailed conclusions, highresolution data must be used to collect more information and describe the erosion process with as much detail as possible, especially for small areas.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-03-01

How to Cite

Aouichaty, N., Bouslihim, Y., Hilali, S., Zouhri, A., & Koulali, Y. (2024). Assessing the Influence of Multiresolution DEMs on Soil Loss Prediction using the RUSLE Model in Central Morocco. Journal of Geological Society of India, 100(3), 426–433. Retrieved from http://www.geosocindia.com/index.php/jgsi/article/view/173849

References

Alkharabsheh, M.M., Alexandridis, T.K., Bilas, G., Misopolinos, N. and Silleos, N. (2013) Impact of land cover change on soil erosion hazard in northern Jordan using remote sensing and GIS. Procedia Environ. Sci., v.19, pp.912–921.

Aouichaty, N., Bouslihim, Y., Hilali, S., Zouhri, A. and Koulali, Y. (2021) Influence of DEM resolution on the RUSLE model: Case of abandoned quarries in Settat province (Morocco). E3S Web of Conferences, 314, 04004. https://doi.org/10.1051/E3SCONF/202131404004

Aouichaty, N., Bouslihim, Y., Zouhri, A. and Koulali, Y. (2022). Estimation of water erosion in abandoned quarries sites using the combination of RUSLE model and geostatistical method. Scientific African, v.16, e01153. https://doi.org/10.1016/J.SCIAF.2022.E01153

Arnoldus, H.M.J. (1977) Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. Rome (Italy) FAO, v.34, pp.39–51.

Benchettouh, A., Kouri, L. and Jebari, S. (2017) Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arab. Jour. Geosci., v.10(4), pp.79.

Beskow, S., Mello, C.R., Norton, L.D., Curi, N., Viola, M.R. and Avanzi, J.C. (2009) Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena, v.79(1), pp.49–59. https://doi.org/10.1016/j.catena.2009.05.010

Bhattarai, R. and Dutta, D. (2006) Estimation of Soil Erosion and Sediment Yield Using GIS at Catchment Scale. Water Resour. Managemt., v.21(10), pp.1635–1647. https://doi.org/10.1007/S11269-006-9118-Z

Bou-Imajjane, L. and Belfoul, M.A. (2020) Soil Loss Assessment in Western High Atlas of Morocco: Beni Mohand Watershed Study Case. Appl. Environ. Soil Sci. https://doi.org/10.1155/2020/6384176

Bouslihim, Y., Rochdi, A., El Amrani Paaza, N. and Liuzzo, L. (2019). Understanding the effects of soil data quality on SWAT model performance and hydrological processes in Tamedroust watershed (Morocco). Jour. African Earth Sci., v.160, 103616. https://doi.org/10.1016/J.JAFREARSCI.2019.103616

Brahim, B., Meshram, S.G., Abdallah, D., Larbi, B., Drisss, S., Khalid, M. and Khedher, K.M. (2020). Mapping of soil sensitivity to water erosion by RUSLE model: case of the Inaouene watershed (Northeast Morocco). Arab. Jour. Geosci. v.13(21), pp.1–15. https://doi.org/10.1007/S12517-020-06079-Y

Chafai, A., Brahim, N. and Shimi, N. S. (2020). Mapping of water erosion by GIS/RUSLE approach: watershed Ayda river—Tunisia study. Arab. Jour. Geosci. v.13(16), pp.1–14. https://doi.org/10.1007/S12517-020-05774-0

Chatterjee, N. (2019) Soil erosion assessment in a humid, Eastern Himalayan watershed undergoing rapid land use changes, using RUSLE, GIS and high-resolution satellite imagery. Modeling Earth Syst. Environ., v.6(1), pp.533–543. https://doi.org/10.1007/S40808-019-00700-0

Chuma, G. B., Bora, F. S., Ndeko, A. B., Mugumaarhahama, Y., Cirezi, N. C., Mondo, J. M., Bagula, E. M., Karume, K., Mushagalusa, G. N. and Schimtz, S. (2021) Estimation of soil erosion using RUSLE modeling and geospatial tools in a tea production watershed (Chisheke in Walungu), eastern Democratic Republic of Congo. Model. Earth Syst. Environ., v.8(1), pp.1273–1289. https://doi.org/10.1007/S40808-021-01134-3

Djoukbala, O., Mazour, M., Hasbaia, M. and Benselama, O. (2018). Estimating of water erosion in semiarid regions using RUSLE equation under GIS environment. Environ. Earth Sci., v.77(9), pp.1–13. https://doi.org/10.1007/S12665-018-7532-1

Dumas, J. (1965) Relation entre l’érodibilité des sols et leurs caractéristiques analytiques. Cahiers Orstom, pp.307–333.

Elaloui, A., Marrakchi, C., Fekri, A., Maimouni, S. and Aradi, M. (2017) USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Model. Earth Syst. Environ., v.3(3),pp. 873–885. https://doi.org/10.1007/S40808-017-0340-X

El Jazouli, A., Barakat, A., Khellouk, R., Rais, J. and Baghdadi, M. El. (2019) Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sens. Applica.: Soc. Environ., v.13, pp.361–374. https://doi.org/10.1016/j.rsase.2018.12.004

Ghosal, K. and Bhattacharya, S. Das. (2020). A Review of RUSLE Model. Jour. Indian Soc. Remote Sen., v.48(4), pp.689–707.

Hoffmann, A., da Silva, M. A., Naves Silva, M. L., Curi, N., Klinke, G. and de Freitas, D. A. F. (2013) Development of Topographic Factor Modeling for Application in Soil Erosion Models. In: Soil Processes and Current Trends in Quality Assessment. InTechOpen Limited London.

Jahun, B. G., Ibrahim, R., Dlamini, N. S. and Musa, S. M. (2015). Review of soil erosion assessment using RUSLE model and GIS. Jour Biol. Agric. Healthc, v.5(9).

Joshi, V.U. (2018) Soil Loss Estimation based on RUSLE along the Central Hunter Valley Region, NSW, Australia. Jour. Geol. Soc. India, v.91(5), pp.554–562. https://doi.org/10.1007/S12594-018-0904-Z/METRICS

Karamesouti, M., Petropoulos, G. P., Papanikolaou, I. D., Kairis, O. and Kosmas, K. (2016). Erosion rate predictions from PESERA and RUSLE at a Mediterranean site before and after a wildfire: Comparison & implications. Geoderma, v.261, pp.44–58. https://doi.org/10.1016/J.GEODERMA.2015.06.025

Ketema, A. and Dwarakish, G. S. (2019) Water erosion assessment methods: a review. doi:10.1080/09715010.2019.1567398

Khademalrasoul, A., & Amerikhah, H. (2020). Assessment of soil erosion patterns using RUSLE model and GIS tools (case study: the border of Khuzestan and Chaharmahal Province, Iran). Model. Earth Syst. Environ. v.7(2), pp.885–895. https://doi.org/10.1007/S40808-020-00931-6

Kim, J.B., Saunders, P. and Finn, J.T. (2005). Rapid assessment of soil erosion in the Rio Lempa Basin, Central America, using the universal soil loss equation and geographic information systems. Environ. Managmt., v.36(6), pp.872–885.

Koca, M.Y. and Kincal, C. (2004). Abandoned stone quarries in and around the Izmir city centre and their geo-environmental impacts - Turkey. Eng. Geol., v.75(1), pp.49–67. https://doi.org/10.1016/j.enggeo.2004.05.001

L’érosion au Maroc. (n.d.). Retrieved March 10, 2021, from http://www.eauxetforets.gov.ma/Desertification/C-E-S/Pages/Erosion-Au-Maroc.aspx

Li, A., Zhang, X. C. (John) and Liu, B. (2021) Effects of DEM resolutions on soil erosion prediction using Chinese Soil Loss Equation. Geomorphology, v.384, 107706. https://doi.org/10.1016/J.GEOMORPH.2021.107706

Lin, S., Jing, C., Coles, N. A., Chaplot, V., Moore, N.J. and Wu, J. (2012). Evaluating DEM source and resolution uncertainties in the Soil and Water Assessment Tool. Stochastic Environ. Res. Risk Asses. v.27(1), pp.209–221. https://doi.org/10.1007/S00477-012-0577-X

Liu, H., Kiesel, J., Hörmann, G. and Fohrer, N. (2011) Effects of DEM horizontal resolution and methods on calculating the slope length factor in gently rolling landscapes. Catena, v.87(3), pp.368–375. https://doi.org/10.1016/J.CATENA.2011.07.003

Maury, S., Gholkar, M., Jadhav, A. and Rane, N. (2019). Geophysical evaluation of soils and soil loss estimation in a semiarid region of Maharashtra using revised universal soil loss equation (RUSLE) and GIS methods. Environ. Earth Sci., 78(5), 144. https://doi.org/10.1007/s12665-019-8137-z

McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K. and Meyer, L.D. (1987) Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASAE, v.30(5), pp.1387–1396.

Millward, A.A. and Mersey, J.E. (1999) Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, v.38(2), pp.109–129. https://doi.org/10.1016/S0341-8162(99)00067-3

Ministère de l’Equipement et du Transport, D. des A. A. et J. (2018). Inventaire national des carrières.

Mitasova, H., Hofierka, J., Zlocha, M., and Iverson, L. R. (1996). Modelling topographic potential for erosion and deposition using GIS. International Jour. Geograph. Inform. Syst., v.10(5), pp.629–641. https://doi.org/10.1080/02693799608902101

Modeste, M., Abdellatif, K., Nadia, M. and Zhang, H. (2016) Cartographie Des Risques De L’erosion Hydrique Par L’equation Universelle Revisee Des Pertes En Sols, La Teledetection Et Les Sig Dans Le Bassin Versant De L’ourika (Haut Atlas, Maroc). European Scient. Jour., v.12(32), pp.277–277. https://doi.org/10.19044/ESJ.2016.V12N32P277

Mondal, A., Khare, D. and Kundu, S. (2016) Uncertainty analysis of soil erosion modelling using different resolution of open-source DEMs. v.32(3), pp.334–349. https://doi.org/10.1080/10106049.2016.1140822

Mondal, A., Khare, D., Kundu, S., Mukherjee, S., Mukhopadhyay, A. and Mondal, S. (2017). Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs. Geosci. Front., v.8(3), pp.425–436. https://doi.org/10.1016/J.GSF.2016.03.004

Nabil, A., Yahya, K., Yassine, B. and Said, H. (2021). Digital Mapping and Spatial Analysis of Quarries Using GIS – A Case Study of Settat Province, Morocco. Ecolog. Eng. Environ. Tech., v.22(1), pp.83–91. https://doi.org/10.12912/27197050/132091

Olorunfemi, I.E., Komolafe, A.A., Fasinmirin, J.T., Olufayo, A.A. and Akande, S. O. (2020). A GIS-based assessment of the potential soil erosion and flood hazard zones in Ekiti State, Southwestern Nigeria using integrated RUSLE and HAND models. Catena, v.194, 104725. https://doi.org/10.1016/J.CATENA.2020.104725

Ostovari, Y., Moosavi, A. A., Mozaffari, H. and Pourghasemi, H.R. (2021). RUSLE model coupled with RS-GIS for soil erosion evaluation compared with T value in Southwest Iran. Arab. Jour. Geosci., v.14(2), pp.1–15.

Ouallali, A., Moukhchane, M., Aassoumi, H., Berrad, F. and Dakir, I. (2016). Evaluation and mapping of water erosion rates in the watershed of the ArbaaAyacha river (Western Rif, Northern Morocco). Bull. l’Institut Scientifique, Rabat, Section Sciences de La Terre, Genève, pp.65–79.

Rango, A. and Arnoldus, H.M.J. (1987) Aménagement des bassins versants. Cahiers Techniques de La FAO, 9.

Ranzi, R., Le, T. H. and Rulli, M. C. (2012) A RUSLE approach to model suspended sediment load in the Lo river (Vietnam): Effects of reservoirs and land use changes. Jour. Hydrol., v.422–423, pp.17–29. https://doi.org/10.1016/j.jhydrol.2011.12.009

Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K. and Yoder, D.C. (1996) Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook, v.703, pp.25–28.

Roose, E. (1996) Land husbandry: components and strategy (Vol. 70). FAO Rome.

Sadiki, A., Bouhlassa, S., Auajjar, J., Faleh, A., & Macaire, J.-J. (2004). Utilisation d’un SIG pour l’évaluation et la cartographie des risques d’érosion par l’Equation universelle des pertes en sol dans le Rif oriental (Maroc): cas du bassin versant de l’oued Boussouab. Bull. de l’Institut Scientifique, Rabat, Section Sciences de La Terre, v.26, pp.69–79.

Saha, S.K. (2003) Water and wind induced soil erosion assessment and monitoring using remote sensing and GIS. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, pp.315–330.

Shan, L., Yang, X., Zhu, Q., Shan, L., Yang, X. and Zhu, Q. (2019) Effects of DEM resolutions on LS and hillslope erosion estimation in a burnt landscape. Soil Res., v.57(7), pp.797–804. https://doi.org/10.1071/SR19043

Sun, W., Shao, Q., Liu, J. and Zhai, J. (2014) Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, v.121, pp.151–163. https://doi.org/10.1016/J.CATENA.2014.05.009

Taoufik, M., Loukili, I., Hadi, H. El. and Baghdad, B. (2020, May 1) Soil erosion risk assessment in an extraction area: Case of abandoned quarries in the Akreuch region (Morocco). Proceedings - 2020 IEEE International Conference of Moroccan Geomatics, MORGEO 2020. https://doi.org/10.1109/Morgeo49228.2020.9121910

Tesfaye, G., Debebe, Y. and Fikirie, K. (2018) Soil Erosion Risk Assessment Using GIS Based USLE Model for Soil and Water Conservation Planning in Somodo Watershed, South West Ethiopia. Internat. Jour. Environ. Agricul. Res., v.4(5).

Williams, J.R. and Berndt, H.D. (1977) Sediment Yield Prediction Based on Watershed Hydrology. Trans. ASAE, v.20(6), pp.1100–1104. https://doi.org/10.13031/2013.35710

Wischmeier, W.H. and Smith, D.D. (1978) Predicting rainfall erosion losses: a guide to conservation planning (Issue 537). Department of Agriculture, Science and Education Administration.

Yusof, N. F., Lihan, T., Idris, W. M. R., Ali Rahman, Z., Mustapha, M. A., & Yusof, M. A. W. (2021). Spatially distributed soil losses and sediment yield: A case study of Langat watershed, Selangor, Malaysia. Jour. Asian Earth Sci., v.212, 104742. https://doi.org/10.1016/J.JSEAES.2021.104742

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.