Digital Mapping of Key Static Soil Attributes of Tamil Nadu, India using Legacy Soil Information

Authors

  • ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Hebbal, Bangalore - 560 024
  • ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Hebbal, Bangalore - 560 024
  • ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Hebbal, Bangalore - 560 024
  • ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Hebbal, Bangalore - 560 024
  • ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Hebbal, Bangalore - 560 024
  • ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Hebbal, Bangalore - 560 024
  • ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Hebbal, Bangalore - 560 024

DOI:

https://doi.org/10.17491/jgsi/2024/173873

Keywords:

No Keywords.

Abstract

Acquiring spatial soil information is pivotal for land resource management, environmental and soil modelling. Digital soil mapping approach helps in prediction of spatial soil properties by establishing the relationship between soil and environmental covariates. In the current study, we attempted to predict and map spatial distribution of soil depth, coarse fragments (CF), and soil textural classes over 0.13 million sq km area of Tamil Nadu, India. About 2105 samples were used for the prediction of soil attributes viz., soil depth and coarse fragments using random forest (RF) regression model, multiple linear regression (MLR), and support vector machine (SVM), while the same set of soil data was used to predict the soil textural classes as categorical variables using Random Forest classifier. Different environmental covariates such as derivatives of digital elevation models, IRS LISS-III data and bioclimatic variables were related for predicting the soil properties. The predicted soil depth and CF ranged from 46-200 cm and 1-42 per cent, respectively. The RF model outperformed by explaining the variability (R2 ) of 43% for soil depth and 21% for coarse fragments with root mean square error (RMSE) of 38 cm and 13%, respectively, whereas, MLR and SVM could achieve the maximum variability of R2 of 0.20 and 0.25 for soil depth and R2 of 0.07 and 0.09 for CF. With respect to soil textural classes, RF classifier performed well with overall accuracy of 63.8% and kappa index of 0.43. Variable importance ranking of Random Forest model showed that elevation, multiresolution valley bottom flatness (MrVBF), multiresolution ridge top flatness (MrRTF) and remote sensing variables (NDVI & EVI) displayed decisive role in prediction of the soil depth, coarse fragments and soil textural classes. In this study, 250 m resolution detailed soil depth, CF and textural class maps were prepared which will be useful for different environmental modelling and proper agricultural management purposes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-04-01

How to Cite

B., K., Dharumarajan, S., Suputhra, A., Lalitha, M., Vasundhara, R., Hegde, R., & Archana, K. (2024). Digital Mapping of Key Static Soil Attributes of Tamil Nadu, India using Legacy Soil Information. Journal of Geological Society of India, 100(4), 561–571. https://doi.org/10.17491/jgsi/2024/173873

References

Abraham, S., Huynh, C. and Vu, H. (2020) Classification of Soils into Hydrologic Groups Using Machine Learning. Data 5, 2. https://doi.org/10.3390/data5010002

Adhikari, K., Kheir, R.B., Greve, M.B., Bøcher, P.K., Malone, B.P., Minasny, B., McBratney, A.B. and Greve, M.H. (2013) High-resolution 3-D mapping of soil texture in Denmark. Soil Sci. Soc. Amer. Jour., v.77, pp.860–876.

Akpa, S.I.C., Odeh, I.O.A., Bishop, T.F.A. and Hartemink, A.E. (2014) Digital mapping of soil particle-size fractions for Nigeria. Soil Sci. Soc. Amer. Jour., v.78, pp.1953–1966.

Arrouays, D., Grundy, M.G., Hartemink, A.E., Hempel, J.W., Heuvelink, G.B.M., Hong, S.Y., Lagacherie, P., Lelyk, G., McBratney, A.B., McKenzie, N.J., Mendonça-Santos, M.D., Minasny, B., Montanarella, L., Odeh, I.O.A., Sanchez, P.A., Thompson, J.A. and Zhang, G.L. (2014) GlobalSoilMap: towards a fine-resolution global grid of soil properties. Advan. Agron., v.125, pp.93–134.

Bonfatti, B.R., Hartemink, A.E., Giasson, E., Tornquist, C.G. and Adhikari, K. (2016) Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma, v.261, pp.204–221. https://doi.org/10.1016/j.geoderma.2015.07.016

Boroujeni, E.I., Shahini-Shamsabadi, M., Shirani, H., Mosleh, Z., Bagheri-Bodaghabadi, M. and Salehi, M.H. (2020) Assessment of different digital soil mapping methods for prediction of soil classes in the Shahrekord plain, Central Iran. Comparison of error and uncertainty of decision. Catena, v.193, 104648.

Breiman, L. (2001) Random forests. Machine Learning, v.45, pp.5-32. https://doi.org/10.1023/A:1010933404324

Byrt, T., Bishop, J. and Carlin, J.B. (1993) Bias, prevalence and kappa. Jour. Clinical Epidemio., v.46(5), pp.423-429.

Camera, C., Zomeni, Z., Noller, J.S., Zissimos, A.M., Christoforou, I.C. and Bruggeman, A. (2017) A high-resolution map of soil types and physical properties for cyprus: A digital soil mapping optimization. Geoderma, v.285, pp.35-49. https://doi.org/10.1016/j.geoderma.2016.09.019

Carvalho Junior, W., Lagacherie, P., Chagas, C.S., Calderano Filho, B. and Bhering, S.B. (2014) A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment. Geoderma, v.232, pp.479-86. https://doi.org/10.1016/j.geoderma.2014.06.007

Cierniewski, J. (1987) A model for soil surface roughness influence on the spectral response of bare soils in the visible and near–infrared range. Remote Sens. Environ., v.23, pp.97–115, https://doi.org/10.1016/0034–4257(87)90073–3

Chan, H.C., Chang, C.H., Chen, P.A. and Lee, J.T. (2019) Using multinomial logistic regression for prediction of soil depth in an area of complex topography in Taiwan. Catena, v.176, pp.419–429.

Cohen, J. (1960) A coefficient of agreement for nominal scales. Educat. Psychol. Measur., v.20, pp.37–46.

Congalton, R.G. and Green, K. (1998) Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC/Taylor & Francis, Boca Raton, USA

Dahlgren, R.A., Boettinger, J.L., Huntington, G.L. and Amundson, R.G. (1997) Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma, v.78(3–4), pp.207-236, https://doi.org/10.1016/S0016-7061(97)00034-7.

Dash, P.K., Panigrahi, N. and Mishra, N. (2022) Identifying opportunities to improve digital soil mapping in India: A systematic review. Geoderma Regional, v.28. https://doi.org/10.1016/j.geodrs.2021.e00478

Dematte, J.A.M., Alves, M.R., Terra, F. da. S., Bosquilia, R.W.D., Fongaro, C.T. and Barros, P.P. da. S. (2016) Is It Possible to Classify Topsoil Texture Using a Sensor Located 800 km Away from the Surface? Revista Brasileira de Ciência do Solo, v.40, e0150335.

Dharumarajan, S., Hegde, R., Janani, N. and Singh, S.K. (2019) The need for digital soil mapping in India. Geoderma Regional, v.16, e00204. https://doi.org/10.1016/j.geodrs.2019.

Dharumarajan, S. and Hegde, R. (2020b) Digital mapping of soil texture classes using Random Forest classification algorithm. Soil Use Managmt. https://doi.org/10.1111/sum.12668

Dharumarajan, S., Kalaiselvi, B., Lalitha, M., Vasundhara, R., and Rajendra Hegde (2021) Defining fertility management units and land suitability analysis using digital soil mapping approach. Geocarto Internat. https://doi.org/10.1080/10106049.2021.1926553

Dharumarajan, S., Kalaiselvi, B., Suputhra, A., Lalitha, M., Hegde, R., Singh, S.K. and Lagacherie, P. (2020) Digital soil mapping of key GlobalSoilMap properties in Northern Karnataka Plateau. Geoderma Regional, v.20. https://www.x-mol.com/paperRedirect/1307836545166970880

Dharumarajan, S., Vasundhara, R., Suputhra, A., Lalitha, M., and Hegde, R. (2020a) Prediction of soil depth in Karnataka using digital soil mapping approach. Jour. Indian Soc. Rem. Sens., v.48(11), pp.1593–1600.

Florinsky, I., Eilers, R., Manning, G. and Fuller, L. (2002) Prediction of soil properties by terrain odelling. Environ. Model. Software, v.17(3), pp.295–311.

Gribb, M., Forkutsa, I., Hansen, A.J., Chandler, D., McNamara, J. (2009) The effect of various soil hydraulic property estimates on soil moisture simulations. Vadose Zone Jour., v.8, pp.321-331. https://doi.org/10.2136/vzj2008.0088

Grimm, R., Behrens, T., Märker, M. and Elsenbeer, H. (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island—digital soil mapping using random forests analysis. Geoderma, v.146, pp.102–113. https://doi.org/10.1016/j.geoderma.2008.05.008

Hengl, T., de Jesus, J.M., Heuvelink, G.B.M., Gonzalez, M.R., Kilibarda, M., Blagotiæ, A., et al. (2017) SoilGrids250m: Global gridded soil information based on machine learning. Plos One, v.12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748

Hengl, T., Heuvelink, G.B., Kempen, B., Leenaars, J.G., Walsh, M.G., Shepherd, K.D., Sila, A., MacMillan, R.A., de Jesus, J.M., Tamene, L. (2015) Mapping soil properties of Africa at 250m resolution: random forests significantly improve current predictions. Plos One, v.10, e0125814.

Hengl, T., Miller, M.A.E., Kri•an, J., Shepherd, K.D., Sila, A., Kilibarda, M., Antonijeviæ, O., Glušica, L., Dobermann, A., Haefele, S.M., McGrath, S.P., Acquah, G.E., Collinson, J., Parente, L., Sheykhmousa, M., Saito, K., Johnson, J.M., Chamberlin, J., Silatsa, F.B.T., Yemefack, M., Wendt, J., MacMillan, R.A., Wheeler, I. and Crouch, J. (2021) African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Scientific Reports, v.11, 6130. https:// doi.org/10.1038/s41598-021-85639-y

Heung, B., Bulmer, C.E. and Schmidt, M.G. (2014) Predictive soil parent material mapping at a regional-scale: a Random Forest approach. Geoderma, v.214-215, pp.141–154. doi:10.1016/j.geoderma.2013.09.016

Heuvelink, G.B. (2013) Uncertainty quantification of GlobalSoilMap products. Global Basis Spatatial soil Information System, pp.327–332.

Holmes, K.W., Griffin, E.A., Gool, D.V. (2021) Digital soil mapping of coarse fragments in southwest Australia: Targeting simple features yields detailed maps. Geoderma, v.404, 115282. https://doi.org/10.1016/j.geoderma.2021.115282

IARI. (1971) Soil Survey Manual. All India Soil and Land Use Survey, IARI, New Delhi.

Kalaiselvi, B., Lalitha, M., Dharumarajan, S., Srinivasan, R., Rajendra Hegde, Anil Kumar, K.S. and Singh, S.K. (2019) Fertility capability classification of semi-arid upland soils of Palani block, Tamil Nadu for sustainable soil management. Indian Jour. Soil Conserv., v.47(3), pp.143-147.

Kempen, B., Brus, D.J., Heuvelink, G.B.M. and Stoorvogel, J.J. (2009) Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach. Geoderma, v.151, pp.311–326.

Kong, X., Dao, T.H., Qin, J., Qin, H., Li, C. and Zhang, F. (2009) Effects of soil texture and land use interactions on organic carbon in soils in North China cities’ urban fringe. Geoderma, v.154(1-2), pp.86–92. https://doi.org/10.1016/j.geoderma.2009.09.016

Kuriakose, S.L., Devkota, S., Rossiter, D.G. and Jetten, V.G. (2009) Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. Catena, v.79(1), pp.27–38.

Lagacherie, P., Arrouays, D., Bourennane, H., Gomez, C., Martin, M., Saby, N.P. (2019) How far can the uncertainty on a Digital Soil Map be known? A numerical experiment using pseudo values of clay content obtained from Vis-SWIR hyperspectral imagery. Geoderma, v.337, pp.1320–1328.

Lagacherie, P., McBratney, A.B. (2007) Spatial soil information systems and spatial Soil inference systems: perspectives for digital soil mapping. In: Lagacherie P, McBratney AB, Voltz M (Eds), Digital Soil Mapping: An Introductory Perspective. Elsevier BV. Hlm, The Netherlands, pp.3–22

Lalitha, M., Dharumarajan, S., Suputhra, A., Kalaiselvi, B., Rajendra Hegde, Reddy, R.S., Shiva Prasad, C.R., Harindranath, C.S. and Dwivedi, B.S. (2021) Spatial prediction of soil depth using environmental covariates by quantile regression forest model. Environ. Monit.Assess., v.193, 660. https://doi.org/10.1007/s10661-021-09348-9

Liao, K., Xu, S., Wu, J. and Zhu, Q. (2013) Spatial estimation of surface soil texture using remote sensing data. Soil Sci. Plant Nutri., v.59(4), pp.488-500.

Ließ, M., Glaser, B. and Huwe, B. (2012) Making use of the World Reference Base diagnostic horizons for the systematic description of the soil continuum – application to the tropical mountain soil-landscape of southern Ecuador. Catena, v.97, pp.20–30.

Lu, Y., Liu, F., Zhao, Y., Song, X. and Zhang, G. (2019) An integrated method of selecting environmental covariates for predictive soil depth mapping. Jour. Integrative Agricul., v.18, pp.301–315. https://doi.org/10.1016/S2095-3119(18)61936-7

Malone, B., Minasny, B., Odgers, N., McBratney, A.B. (2014) Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma, v.232-234, pp.34–44.

Malone, B.P., Luo, Z., He, D., Rossel, R.A.V. and Wang, E. (2020) Bioclimatic variables as important spatial predictors of soil hydraulic properties across Australia’s agricultural region. Geoderma Regional, e00344. https://doi.org/10.1016/j.geodrs.2020.e00344

Mansuy, N., Thiffault, E., Paré, D., Bernier, P., Guindon, L., Villemaire, P., Poirier, V., Beaudoin, A. (2014) Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method. Geoderma, v.235-236, pp.59–73.

Mashalaba, L., Galleguillos, M., Seguel, O. and Poblete-Olivares, J. (2020) Predicting spatial variability of selected soil properties using digital soil mapping in a rainfed vineyard of central Chile. Geoderma Regional, v.22, e00289.

McBratney, A.B., Mendonca-Santos, M.L. and Minasny, B. (2003) On digital soil mapping. Geoderma, v.117, pp.3–52. https://doi.org/10.1016/S0016-7061(03)00223-4

Mehnatkesh, A., Ayoubi, S., Jalalian, A. and Sahrawat, K.L. (2013) Relationships between soil depth and terrain attributes in a semi-arid hilly region in western Iran. Jour. Mount. Sci., v.10(1), pp.163–172.

Mehrabi-Gohari, E., Matinfar, H.R., Jafari, A., Taghizadeh-Mehrjardi, R. and Triantafilis, J. (2019) The Spatial Prediction of Soil Texture Fractions in Arid Regions of Iran. Soil System, v.3, pp.65.

Minasny, B. and McBratney, A.B. (2016) Digital soil mapping: a brief history and some lessons. Geoderma, v.264, pp.301–311.

Mitran, T., Solanky, V., Janakirama Suresh, G., Sujatha, G., Sreenivas, K. and Ravisankar, T. (2018) Predictive mapping of surface soil texture in a semiarid region of India through geostatistical modelling. Model. Earth Syst. Environ., https://doi.org/10.1007/s40808-018-0556-4

Mosleh, Z., Salehi, M.H., Jafari, A., Borujeni, I.E. and Mehnatkesh, A. (2016) The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environ. Monit. Assess., v.188(195). https://doi.org/10.1007/s10661-016-5204-8

Mulder, V.L., Lacoste, M., Richer-de-Forges, A.C., Arrouays, D., (2016) GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two-meter depth. Sci. Total Environ., v.573, pp.1352–1369.

Natarajan, A., Reddy, P.S.A., Sehgal, J. and Velayutham, M. (1997) Soil Resources of Tamil Nadu for Land Use Planning. NBSS Publ 46b (Soils of India series) National Bureau of Soil Survey and Land Use Planning, Nagpur, India, pp.88 +4 sheet soil map 1:500,000 scale.

Nauman, T.W., Duniway, M.C. (2019) A hybrid approach for predictive soil property mapping using conventional soil survey data. Soil Sci. Soc. Amer. Jour., v.84, pp.1170–1194. https://doi.org/10.1002/saj2.2008

Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A., Greiner, L., Schaepman, M.E. and Papritz, A. (2018) Evaluation of digital soil mapping approaches with large sets of environmental covariates. Soil, v.4, pp.1–22. https://doi.org/10.5194/soil-4-1-2018

Penizek, V. and Borùvka, L. (2004) Processing of conventional soil survey data using geostatistical methods. Plant Soil Environ., v.50, pp.352–357.

Piper, C.S. (1966) Soil and Plant Analysis. Hans Publisher, Bombay

Reddy, N.N., Chakraborty, P., Roy, S., Singh, K., Minasny, B., McBratney, A.B., Biswas, A., Das, B.S. (2021) Legacy data-based national-scale digital mapping of key soil properties in India. Geoderma, v.381, 114684. https://doi.org/10.1016/j.geoderma.2020.114684.

Santra, P., Kumar, M. and Panwar, N. (2017) Digital soil mapping of sand content in arid western India through geostatistical approaches. Geoderma Regional, v.9, pp.56–72. https://doi.org/10.1016/j.geodrs.2017.03.003.

Senagi, K., Jouandeau, N., Kamoni, P. (2017) Using parallel random forest classifier in predicting land suitability for crop production. Jour. Agricul. Inform., v.8(3), pp.23–32. https://doi.org/10.17700/jai.2017.8.3.390

Shivaprasad, C.R., Reddy, R.S., Sehgal, J. and Velayutham, M. (1998) Soils of Karnataka for optimizing land use. NBSS&LUP publication No.47b, Nagpur.

Silva, B.P.C., Silva, M.L.N., Avalos, F.A.P., Menezes, M.D.D., and Curi, N. (2019) Digital soil mapping including additional point sampling in Posses ecosystem services pilot watershed, southeastern Brazil. Scientific Reports Nature, v.9, 13763.

Soil Survey Staff (2014) Soil taxonomy: a basic systems of soil classification for making and interpreting soil surveys (Twelfth ed). USDA, NRCS.

Stenberg, B., Viscarra Rossel, R.A., Mouazen, A.M., Wetterlind, J. (2010) Visible and near infrared spectroscopy in soil science. Adv. Agron., v.107, pp.163–215. v10.1016/S0065-2113(10)07005-7

Story, M. and Congalton, R. (1986) Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens., v.52, pp.397–399.

Taghizadeh-Mehrjardi, R., Sarmadian, F., Minasny, B., Triantafilis, J. and Omid, M. (2014) Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region, Iran. Arid Land Res. and Managm., v.28, pp.147-168, https://doi.org/10.1080/15324982.2013.828801.

Taghizadeh-Mehrjardi, R., Nabiollahi, K. and Kerry, R. (2016) Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, v.266, pp.98–110.

Tesfa, T.K., Tarboton, D.G., Chandler, D.G. and McNamara, J.P. (2009) Modelling soil depth from topographic and land cover attributes. Water Resour. Res., v.45, W10438. https://doi.org/10.1029/2008WR007474

Thompson, J.A., Roecker, S., Grunwald, S. and Owens, P.R. (2012) Digital soil mapping: Interactions with and applications for hydropedology. In: Lin, H. (EdD.), Hydropedology. Academic Press, Boston, pp.665-709.

Tola, E., Al-Gaadi, K.A., Madugundu, R., Zeyada, A.M., Kayad, A.G. and Biradar, C.M. (2017) Characterization of spatial variability of soil physicochemical properties and its impact on Rhodes grass productivity. Saudi Jour. Biolog. Sci., v.24(2), pp.421–429. https://doi.org/10.1016/j.sjbs.2016.04.013

Tsai, C.C., Chen, Z.S., Duh, C.T. and Horng, F.W. (2001) Prediction of soil depth using a soil landscape regression model: a case study on forest soils in southern Taiwan. National Science Council of the Republic of China. Part B- Life Sciences, v.25(1), pp.34–39.

Vågen, T.G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., and Gumbricht, T. (2016) Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma, v.263, pp.216–225.

Vaysse, K. and Lagacherie, P. (2015) Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional, v.4, pp.20–30.

Vaysse, K. and Lagacherie, P. (2017) Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma, v.291, pp.55–64. https://doi.org/10.1016/j.geoderma.2016.12.017

Viscarra Rossel, R.A., McGlynnand, R.N., McBratney, A.B. (2006) Determining the composition of mineral-organic mixes using UV–Vis–NIR diffuse reflectance spectroscopy. Geoderma, v.137(1), pp.70–82.

Wilding, L. (1985) Spatial variability: its documentation, accommodation and implication to soil surveys. In: Soil Spatial Variability Workshop, pp.166–194.

Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S. and Finke, P., (2019) Digital mapping of soil properties using multiple machine learning in a semiarid region, central Iran. Geoderma, v.338, pp.445-452. https://doi.org/10.1016/j.geoderma.2018.09.006

Zhang, M., Shi, W. and Xu, Z. (2020) Systematic comparison of five machine-learning models in classification and interpolation of soil particle size fractions using different transformed data. Hydrol. Earth Syst. Sci., v.24, pp.2505–2526. https://doi.org/10.5194/hess-24-2505-2020

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.