Application of X-Ray Diffraction Method for Characterization of Crystalline Basalt Samples

Authors

  • Faculty of Sciences and Technology, Omdurman Islamic University
  • Department of Physical Sciences, College of Science, Jazan University, P.O.Box 114, Jazan 82817
  • Department of Physics, University of Kassala, Kassala
  • Department of Physical Sciences, College of Science, Jazan University, P.O.Box 114, Jazan 82817
  • Department of Physical Sciences, College of Science, Jazan University, P.O.Box 114, Jazan 82817

DOI:

https://doi.org/10.17491/jgsi/2024/173874

Keywords:

No Keywords.

Abstract

X-ray powder diffraction technique is used in this work to investigate the contents and the crystal structure of basalt gneiss, which are prepared by mechanical milling to get homogeneous powder. The experimental x-ray pattern of the sample was smoothed and then analyzed by using a standard pattern. The results are reported for quartz (hexagonal), biotite (monoclinic system), and anorthite (triclinic) the parameters of the crystal systems are found to be aQuartz = bQuartz = 4.916, cQuartz = 5.4090 and αQuartz = βQuartz = 90°, γQuartz = 120° for quartz, aBiotite = 5.3520 bBiotite = 9.2660, cBiotite = 10.3130 and with αBiotite = γBiotite = 90°, βBiotite = 100.2240° for biotite, and aAnorthite = 7.5980, bAnorthite = 7.6250, cAnorthite = 12.8788 with αAnorthite = 91.3470° , βAnorthite = 97.7100° and γAnorthite = 115.0300° for anorthite. While the volume of unit cells are found to be (VUnit cell)Quartz = 113.21 × 106 Pm3 , (VUnit Cell) Biotite = 503.32 × 106 Pm3 , (VUnit cell)Anorthite = 667.26 × 106 Pm3 , for quartz, biotite and anorthite. The numbers of unit cell and the atomic densities are recorded as (na.u.c)Quartz = 3.00, (ρCal)Quartz = 2.64 g/cm3 , for quartz, (na.u.c)Biotite = 1.00, (ρCal)Biotite = 3.03 g/cm3 , for biotite and (na.u.c) Anorthite = 8.00, (ρCal)Quartz = 2.70 g/cm3, for anorthite. From the results of this work, basalt is found to be mixture of the molecules with percentages of 17.7% for quartz, 18.6% for biotite and 63.7% for anorthite. The results were compared with the standard results for the same molecules.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-04-01

How to Cite

Abdelgadir, M., Yagob, A. A., Elzain, A. E. A., Idris, M. A., & Yagoob, S. I. (2024). Application of X-Ray Diffraction Method for Characterization of Crystalline Basalt Samples. Journal of Geological Society of India, 100(4), 572–580. https://doi.org/10.17491/jgsi/2024/173874

References

Akinci, A. (2009) Mechanical and morphological properties of basalt filled polymer matrix composites. Archives of Materials Science and Engineering, v.35(1), pp.29-32. http://www.amse.acmsse.h2.pl/vol35_1/3514.pdf.

Al-Baijat, H. M. (2008) The use of basalt aggregates in concrete mixes in Jordan. Jordan Jour. Civil Eng., v.2(1), pp.63-70. https://core.ac.uk/download/pdf/234698246.pdf.

Al-Ghamdi, A.H. (2019) X-ray diffraction and gamma-ray analysis of rock samples from Haradh Region in Saudi Arabia. Jour. Radiation Res. Appl. Sci., v.12(1), pp.87-92. https://doi.org/10.1080/16878507.2019.1594142.

Al Sekhaneh, W. and El-Hasan, T. (2021) Characterization of Basalt for Conservation Use from Cultural Heritage Site of Umm El-Jimâl in Jordan. Iraqi Geol. Jour., v.54(1B), pp.12-23. https://doi.org/10.46717/igj.54.1B.2 Ms-2021-02-20

Alexander, L. (1976) Forty years of quantitative diffraction analysis. Advan. X-Ray Analy., v.20, pp.1-13. https://doi.org/10.1154/S0376030800011666.

Amaral, P.M., Fernandes, J.C. and Rosa, L. G. (2006) A comparison between X-ray diffraction and petrography techniques used to determine the mineralogical composition of granite and comparable hard rocks. Materials Sci. Forum, v.514-516, pp.1628-1632. https://doi.org/10.4028/www.scientific.net/MSF.514-516.1628.

Andriæ, L., Aæimoviæ Z.P, Trumiæ, M., Prstiæ, A., Tanaskoviæ, Z. (2012) Specific characteristics of coating glazes based on basalt. Material & Design, v.39, pp.9-13. https://doi.org/10.1016/j.matdes.2012.02.022.

Arafa, A.M.Y. (2016) Characterization of Crystalline Hornblende Gneiss by X-Ray Diffraction Technique. International Jour. Eng. Sci. Comput., v.6(4), pp.3793-3798. https://doi.org/10.4010/2016.880.

Boggs, S. (2006) Principles of sedimentology and stratigraphy (4th ed.). Upper Saddle River, N.J.: Pearson Prentice Hall. p.130.

Boudchicha, M.R., Achour, S. and Harabi, A. (2001) Crystallization and sintering of cordierite and anorthite based binary ceramics. Jour. Mater. Sci. Lett., v.20(3), pp.215-217. https://doi.org/10.1023/A:1006782215366.

Brindley, G.W. (1945) XLV. The effect of grain or particle Size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods. Philos. Mag. Series 7, v.36(256), pp.347-369. https://doi.org/10.1080/14786444508520918.

Carmichael, I.S., Turner, F.J. and Verhoogen, J. (1974) Igneous Petrology. New York: McGraw-Hill. p. 250.

Cheng, X., Ke, S., Wang, Q. , Wang, H., Shui, A. and Liu, P. (2012) Fabrication and characterization of anorthite-based ceramic using mineral raw materials. Ceramics Internat., v.38(4), pp.3227-3235. https://doi.org/10.1016/j.ceramint.2011.12.028.

Chowdhury, I. R., Pemberton, R. and Summerscales, J. (2022). Developments and Industrial Applications of Basalt Fibre Reinforced Composite Materials. Jour. Composites Sci.,v.6(12): 367. https://doi.org/10.3390/jcs6120367.

Chung, F.H. (1975) Quantitative interpretation of X-ray diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities. Jour. Appl. Crystal., v.8(1), pp.17-19. https://doi.org/10.1107/S0021889875009454.

Cline, J.P. and Snyder, R.L. (1986) The effects of extinction on X-ray powder diffraction intensities. Advances in X-Ray Analysis, 30, pp.447-456. https://doi.org/10.1154/S0376030800021601.

Collis, L. and Smith, M.R. (2001) Aggregates: sand, gravel and crushed rock aggregates for construction purposes. Geol. Soc. London, Eng. Geol. Spec. Publ., v.17(1). https://doi.org/10.1144/GSL.ENG.2001.017

Copeland, L.E. and Bragg, R.H. (1958). Quantitative X-Ray Diffraction Analysis. Analytical Chemistry, v.30(2), pp.196–201. https://doi.org/10.1021/ac60134a011.

Davis, B.L. and Smith, D.K. (1988) Tables of Experimental Reference Intensity Ratios. Powder Diffraction, v.3(4), pp.205–208. https://doi.org/10.1017/s088571560001349x.

Davis, B.L. and Walawender, M.J. (1982) Quantitative mineralogical analysis of granitoid rocks: a comparison of X-ray and optical techniques. Amer. Mineral., v.67(11-12), pp.1135-1143. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/67/11-12/1135/41334/Quantitative-mineralogical-analysis-of-granitoid.

El-Taher, A., Uosif, M.A.M. and Orabi, A.A. (2007) Natural radioactivity levels and radiation hazard indices in granite from Aswan to Wadi El-Allaqi southeastern desert, Egypt. Radiation Protection Dosimetry, v.124(2), pp.148–154. https://doi.org/10.1093/rpd/ncm211.

Engidasew, T. A. and Abay, A. (2016) Assessment and Evaluation of Volcanic Rocks Used as Construction Materials in the City of Addis Ababa. Momona Ethiopian Jour. Sci., v.8(2), pp.193–212. https://doi.org/10.4314/mejs.v8i2.7.

Fookes, P.G. (1980) An introduction to the influence of natural aggregates on the performance and durability of concrete. Quart. Jour. Eng. Geol. Hydrogeol., v.13(4), pp.207–229. https://doi.org/10.1144/GSL.QJEG.1980.013.04.02

Gittos, M.F., G. Lorimer, G.W. and Champness, P.E. (1974) An electron-microscopic study of precipitation (exsolution) in an amphibole (the hornblende-grunerite system). Jour. Mater. Sci., v.9(2): 184-192. https://doi.org/10.1007/BF00550940.

Hamilton, W.C. (1965) Significance tests on the crystallographic R factor. Acta Chrystalographica, v.18(3), pp.502-510. https://doi.org/10.1107/S0365110X65001081

Han, Y., Li, C., Bian, C., Li, S. and Wang, C.-A. (2013) Porous anorthite ceramics with ultra-low thermal conductivity. Jour. European Ceramic Soc., v.33(13-14), pp.2573-2578. https://doi.org/10.1016/j.jeurceramsoc. 2013.04.006.

Hill, R.G., Tsambourakis, G. and Madsen, I.C. (1993) Improved petrological modal analyses from X-ray powder diffraction data by use of the Rietveld method I. Selected igneous, volcanic, and metamorphic rocks. Jour. Petrol., v.34(5), pp.867-900. https://doi.org/10.1093/petrology/34.5.867.

Hubbard, C.R., Evans, E.H. and Smith, D.K. (1976) The reference intensity ratio, I/Ic, for computer simulated powder patterns. Jour. Appl. Crystal., v.9(2), pp.169-174. https://doi.org/10.1107/S0021889876010807

Hubbard, C.R. and Snyder, R.L. (1988) RIR - Measurement and Use in Quantitative XRD. Powder Diffraction, v.3(2), pp.74–77. https://doi.org/10.1017/s0885715600013257

Iorio, M., Santarelli, M. L., González-Gaitano, G. and González-Benito, J. (2018) Surface modification and characterization of basalt fibers as potential reinforcement of concretes. Appl. Surf. Sci., v.427(A), pp.1248-1256. https://doi.org/10.1016/j.apsusc.2017.08.196.

Jayawardena, U.D.S. and Dissanayake, D.M.S. (2008). Identification of the most suitable rock types for manufacture of quarry dust in Sri Lanka. Jour. Natl. Sci. Found. Sri Lanka, v.36(3), pp.215–218. https://doi.org/10.4038/jnsfsr.v36i3.157.

Kihara, K. (1990) An X-ray study of the temperature dependence of the quartz structure. European Jour. Mineral., v.2(1), pp.63–77. https://doi.org/10.1127/ejm/2/1/0063. hdl:2027.42/146327.

Kleywegt, G.J. and Brünger, A.T. (1996) Checking your imagination: applications of the free R value. Structure, v.4(8), pp.897-904. https://doi.org/10.1016/s0969-2126(96)00097-4.

Klug, H.P. and L.E. Alexander (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials. 2nd Edition, John Wiley & Sons.

Kobayashi, Y. and Kato, E. (1994). Low temperature fabrication of anorthite ceramics. Jour. Amer. Ceramic Soc., v.7(3), pp.833-834. https://doi.org/10.1111/j.1151-2916.1994.tb05373.x.

Lagerblad, B., Gram, H.-E. and Westerholm, M. (2014) Evaluation of the quality of fine materials and filler from crushed rocks in concrete production. Construct. Build. Mat., v.7(A), pp.121-126. https://doi.org/10.1016/j.conbuildmat.2013.10.029.

Lar, A.U. and Tsalha, M.S. (2005) Geochemical characteristics of the Jos-plateau basalts, north-Central Nigeria. Global Jour. Geol. Sci., v.3(2), pp.187-193. https://doi.org/10.4314/gjgs.v3i2.18726.

Li, B., He, M., Hwang, J.Y. and Gan, W. (2016) Synthesis and Characteristics of Anorthite Ceramics from Steelmaking Slag. In: , et al. Characterization of Minerals, Metals, and Materials 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48210-1_32.

Luquer, Lea McIlvaine (1913) Minerals in Rock Sections: The Practical Methods of Identifying Minerals in Rock Sections with the Micro-scope (4 ed.). New York: D. Van Nostrand Company. p.91.

Lutgens, F.K. and Tarbuck, E.J. (1999) Foundations of Earth Science, 2nd ed. x 454 pp. CD-ROM. Upper Saddle River, NJ: Prentice Hall. https://doi.org/10.1017/S0016756801286233

Mark E.H. (2006) Does reactive surface area depend on grain size? Results from pH 3, 25 C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite. v.70(7), pp.0–1667. https://doi.org/10.1016/j.gca.2006.01.001.

Medvedovskii, E. Ya. and Kharitonov, F. Ya. (1990) Anorthite ceramic materials. v.47(12), pp.462-465, https://doi.org/10.1007/bf01134938.

Mergen, A. and Aslanoçlu, ve.- Z. (2003) Low-temperature fabrication of anorthite ceramics from kaolinite and calcium carbonate with boron oxide addition. v.29(6), pp.667-670. https://doi.org/10.1016/S0272-8842(02)00215-8.

Miskovsky, K. (2004) Enrichment of fine mica originating from rock aggregate production and its influence on the mechanical properties of bituminous mixtures. Jour. Mater. Eng. Perform., v.13(5), pp.607-611. https://doi.org/10.1361/15477020420837

Morel, S. W. (1988) Malawi glimmerites. Jour. African Earth Sci., v.7(7/8), pp.987–997. https://doi.org/10.1016/0899-5362(88)90012-7

Muktadir, G., Amro, M., Kummer, N., Freese, C. and Abid, K. (2021) Application of X-ray Diffraction (XRD) and Rock–Eval Analysis for the Evaluation of Middle Eastern Petroleum Source Rock. Energies. v.14(20): 6672. https://doi.org/10.3390/en14206672.

Nesbitt, H.W. and Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta., v.48(7), pp.1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3.

Neville, A.M. (1995) Properties-of-Concrete-AM 149. 4th Edition, Addison Wesley Longman Ltd., Essex, London.

Pavloviæ, M., Durièiæ, M. and Mumgiæ, A. (2015) Basalt application prospects for touristic facilities furnishing. in the 2nd International Conference in: Higher Education in Function of Development of Tourism in Serbia and Western Balkans, SED 2015, Paper preceedings, Milutin Ðurièiæ,M., Jovanoviæ, M,. and Milutinoviæ, N., (Eds.), October 2015, U•ice, Serbia, pp.299-306.

Pavloviæ, M., Sarvan, M., Klisura, F. and Aæimoviæ, Z. (2016) Basalt-Raw Material for Production of Aggregate for Modern Road and Rail Shourd. In Proceedings of the 4th Conference Maintenace, Zenica, B&H, 2–4 June 2016; pp.175–183.

Prstiæ, A., Aæimoviæ-Pavloviæ, Z., Pavlovic, L.J., Andric, L., and Terzic, A. (2007). The Application of Basalt in the Manufacturing of Ceramic Glazes. Jour. Min. Metall., v.43(A), pp.53-60. https://www.jmma.tfbor.bg.ac.rs/Volumes/2007/06.pdf.

Ramsay, D.M., Dhir, R.K. and Spence, I.J. (1974) The role of rock and clast fabric in the physical performance of crushed-rock aggregate. Eng. Geol., v.8(3), pp.267-285. eds: 10.1016/0013-7952(74)90002-7.

Saigusa, Y. (2017) Chapter 5 – Quartz-Based Piezoelectric Materials”. In: Uchino, Kenji (Ed.). Advanced Piezoelectric Materials. Woodhead Publishing in Materials (2nd ed.). Woodhead Publishing. pp.197–233. https://doi.org/10.1016/B978-0-08-102135-4.00005-9.

Saines, M. N. (1994) Engineering Geology: Rock in Engineering Construction. Ground Water; Dublin, v.32(6), 1044.

Saltas, V., Pentari, D. and Vallianatos, F. (2020) Complex electrical conductivity of biotite and muscovite micas at elevated temperatures: A comparative study. Materials, v.13(16), 3513. https://doi.org/10.3390/ma13163513.

Setiawan, M.R., Iqbal, M. and Siregar, R.N. (2019) Mineral analysis in rocks using XRD and Petrography. Jour. Sci. Appl. Tech., Proc. Internat. Conf. Sci., Tech., Infrastruct. Regional Develop. (ICOSITER) 2018, v.2(1), pp.206-214. https://media.neliti.com/media/publications/281459-mineral-analysis-in-rocks-using-xrd-and-369e320e.pdf.

Sharma, P. (2016) An introduction to basalt rock fiber and comparative analysis of engineering properties of BRF and other natural composites. Internat. Jour. Res. Appl. Sci. Eng. Tech., v.4(1): 141-148. https://www.ijraset.com/fileserve.php?FID=3751.

Tasong, W.A., Lynsdale, C.J. and Cripps, J.C. (1998) Aggregate-cement paste interface. ii: influence of aggregate physical properties. Cement and Concrete Res., v.28(10), pp.1453-1465. https://doi.org/10.1016/S0008-8846(98)00126-4.

Umbugadu, A.A. and Igwe, O. (2019) Mineralogical and major oxide characterization of Panyam clays, North-Central Nigeria. Internat. Jour. Physical Sci., v.14(11): 108-115. https://doi.org/10.5897/IJPS2019.4804.

Wakizaka, Y., Ichikawa, K., Nakamura, Y. and Anan, S. (2001) Deterioration of concrete due to specific minerals. Proc. Aggregate 2001, Environ. Econ., v.2, pp.331-338.

Wang, F., Xiao, Y., Chen, Z., Cui, P., Liu, J. and Wang, N. (2022). Morphological characteristics of mineral filler and their influence on active adhesion between aggregates and bitumen. Construction and Building Materials, v.323, 126520. https://doi.org/10.1016/j.conbuildmat.2022.126520.

Willy, D.S. and Rueslåtten, H.G. (1980) Feldspar and mica. Key minerals for fine aggregate quality. Bull. Internat. Assoc. Eng. Geol., v.22(1), pp.215-219. https://doi.org/10.1007/BF02600673.

Petrov, Î. (2020) Powder XRD methodology–main research instrument in Earth and Material sciences. Rev. Bulgarian Geol. Soc., v.81(3), pp.46-48. http://bgd.bg/Review_Bgs/Review_Bgd_2020_3/PDF/10_Petrov_ GeoSci_2020.pdf

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.