Mineralogy, Geochemistry and Industrial Appraisal of Kaolin from Abeokuta Area, Southwestern Nigeria

Authors

  • Department of Earth Sciences, Olabisi Onabanjo University
  • Department of Earth Sciences, Olabisi Onabanjo University
  • Geology Department, University of Free State, Bloemfontein
  • Department of Earth Sciences, Olabisi Onabanjo University
  • Department of Earth Sciences, Olabisi Onabanjo University
  • Department of Geological Services, Ogun State Ministry of Industry, Trade and Investment Abeokuta

DOI:

https://doi.org/10.17491/jgsi/2024/173896

Keywords:

Kaolinite, SEM, FTIR, Provenance, Abeokuta

Abstract

Kaolin is commonly used in many industries. This study was carried out to characterise selected kaolin deposits in the Abeokuta area of southwestern Nigeria and evaluate possible industrial applications. The mineralogy and geochemical composition were determined and used to evaluate the industrial application. Mineralogically, the samples are composed of kaolinite, quartz, mica, anatase, and minor hematite, k-feldspar, calcite, plagioclase and clino-pyroxene. The clays are mostly composed of hexagonal euhedral to subhedral plates of disordered kaolin. Geochemical characterisation revealed high SiO2 values, high SiO2/Al2O3 and Al2O3/TiO2 values which denotes high quartz concentration and sourcing from felsic igneous source respectively. Discriminant plots also revealed the kaolin are of intermediate to felsic ancestry while Ni/Co values revealed they were formed in anoxic environment. Comparison of the elemental concentration of industrial standards revealed the kaolin will be best suited for ceramics and refractory purposes though some of the clays may need upgrading by removal of excess Fe2O3 and TiO2 as well as addition of fluxing materials to improve its suitability for certain applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2024-05-01

How to Cite

O.G., O., O.M., A., M.D., W.-P., O.A., O., D.O., B., & M.O., A. (2024). Mineralogy, Geochemistry and Industrial Appraisal of Kaolin from Abeokuta Area, Southwestern Nigeria. Journal of Geological Society of India, 100(5), 745–754. https://doi.org/10.17491/jgsi/2024/173896

References

Abd El-Moghny, M.W. (2017) The Nature, Origin and Distribution of Kaolinite in the Lower Paleozoic Naqus Formation along Western Side of Gulf of Suez, Egypt. Nature and Science, v.15(2), pp.49-69

Abdoulaye, O.D.M, Yao, B.K., Ahmed, A.M., Adouby, K., Abro, D.M.K. and Drogui P. (2019) Mineralogical and morphological characterization of a clay from Niger. Jour. Mater. Environ. Sci., v.10(7), pp.582-589

Adekeye, O.A., Akande, S.O. and Adeoye, J.A. (2019) The assessment of potential source rocks of Maastrichtian Araromi formation in Araromi and Gbekebo wells Dahomey Basin, southwestern Nigeria. Heliyon, https://doi.org/10.1016/j.heliyon.2019.e01561.

Ajayi, T.R., Oyawale, A.A., Islander, F.Y., Asubiojo, O.I., Klein, D.E. and Adediran, A.I. (2006) Trace and Rare Earth Elements Geochemistry of Oshosun Sediments of Dahomey Basin, Southwestern Nigeria. Jour. Appl. Sci., v.6(9), pp.2067–2076. https://doi.org/10.3923/jas.2006.2067.2076.

Awad, M.E., Amer, R., López-Galindo, A., El-Rahmany, M.M., Luis, F., Del Moral, G. and Viseras, C. (2018) Hyperspectral remote sensing for mapping and detection of Egyptian kaolin quality. Appl. Clay Sci., v.160, pp.249–262. https://doi.org/10.1016/j.clay.2018.02.042

Awad M.E., López-Galindo, A., El-Rahmany, M.M., El-Desoky, H.M. and Viseras, C. (2017) Characterization of Egyptian kaolins for health-care uses. Appl. Clay Sci., v.135, pp.176–189. https://doi.org/10.1016/j.clay.2016.09.018

Barker, J.E., Fulton, A., Evans, K.A. and Powell, G. (2006) The effects of kaolin particle film on Plutella xylostella behaviour and development. Pest Managemt. Sci., v.62(6), pp.498–504. https://doi.org/10.1002/ps.1191

Barker, J.E., Holaschke, M., Fulton, A., Evans, K.A. & Powell, G. (2007) Effects of kaolin particle film on Myzus persicae (Hemiptera: Aphididae) behaviour and performance. Bull. Entomol. Res., v.97(5), pp.455–460. https://doi.org/10.1017/S0007485307005093

Billman, H.G. (1992) Offshore stratigraphy and paleontology of the dahomey embayment, West African. Nigerian Assoc. Petrol. Explor. Bull., v.7, pp.121–130

Bukalo, N., Ekosse, G.I., Odiyo, J. and Ogola, J. (2020) Paleoclimatic Implications of Hydrogen and Oxygen Isotopic Compositions of Cretaceous–Tertiary Kaolins in the Douala Sub-Basin, Cameroon. Comptes Rendus Geosci., v.351, pp.17–26. https://doi.org/10.1016/j.crte.2018.11.007

Cabrera, J.G. and Eddleston, M. (1983) Kinetics of dehydroxylation and evaluation of the crystallinity of kaolinite. Thermochim. Acta, v.70, pp.237–247. https://doi.org/10.1016/0040-6031(83)80198-1

Cases, J.M., Cunin, P., Grillet, Y., Poinsignon, C. and Yvon, J., (1986). Methods of analysing morphology of kaolinites: relations between crystallographic and morphological properties. Clay Minerals v.21(1), pp.55-68. https://doi.org/10.1180/claymin.1986.021.1.05.

Celik, H. (2010) Technological characterization and industrial application of to Turkish clays for the ceramic industry. Appl. Clay Sci., v.50, pp.245–254. https://doi.org/10.1016/j.clay.2010.08.005

Chen, M., Yang, T., Han, J., Zhang, Y., Zhao, L., Zhao, J., Li, R., Huang, Y., Gu, Z., Wu, J. (2023) The Application of Mineral Kaolinite for Environment Decontamination: A Review. Catalysts, v.13, 123. https://doi.org/10.3390/catal13010123

Coker, S.J., Ejedawe, J.E. and Oshiorienua, J.A. (1983) Hydrocarbon source potentials of Cretaceous rocks of Okitipupa Uplift, Nigeria. Jour. Min. Geol., v.22, pp.163–169.

Dalbert, S., Ganter, M.T., Furrer, L., Klaghofer, R., Zollinger, A., and Hofer, C.K. (2006). Effects of heparin, haemodilution and aprotinin on kaolin-based activated clotting time: in vitro comparison of two different point of care devices. Acta Anaesthesiologica Scandinavica. v.50(4), pp.461–468. https://doi.org/10.1111/j.1399-6576.2006.00990.x

Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the rock-forming minerals. Mineralogical Society of Great Britain and Ireland.

Dill, H.G., Bosse, H.R., Henning, K.H., Fricke, A. and Ahrendt H. (1997) Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt the Cenntral Andes of northwestern Peru. Mineral. Deposita, v.32, pp.149-163. https://doi.org/10.1007/s001260050081

Dill, H.G., Bosse, H.R. and Kassbohm, J. (2000) Mineralogical and chemical studies of volcanic-related argillaceous Industrial minerals of the Central America Cordillera (Western Salvador). Econ. Geol., v.95(3), pp.517-538. https://doi.org/10.2113/gsecongeo.95.3.517

Domínguez, E., Iglesias, C. and Dondi, M. (2008) The Geology and Mineralogy of a Range of Kaolins from the Santa Cruz and Chubut Provinces, Patagonia (Argentina). Appl. Clay Sci., v.40, pp.124–142. https://doi.org/10.1016/j.clay.2007.07.009.

Elueze, A.A. and Nton, M.E. (2004) Organic geochemical appraisal of limestone and shales in part of eastern Dahomey Basin, southwestern Nigeria. Jour. Min. Geol., v.40(1), pp.29–40.

Elueze, A.A. and Bolarinwa A.T. (2001) Appraisal of the residual and sedimentary clays in part of Abeokuta area, Southwestern Nigeria. Jour. Min. Geol., v.37(1), pp.7-14.

Fialips, C.I., Petit, S. and Decarreau, A. (2000) Influence of synthesis pH on kaolinite “crystallinity”and surface properties. Clay and Clay Minerals, v.48(2), pp.173–184. https://doi.org/10.1346/CCMN.2000.0480203

Garcia-Valles, M., Alfonso, P., Martínez, S. and Roca, N. (2020) Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain) Minerals, v.10, 142, https://doi.org/10.3390/min10020142

Gougazeh, M. and Buhl, J.C. (2010) Geochemical and mineralogical characterization of the Jabal Al-Harad kaolin deposit, southern Jordan, for its possible utilization. Clay Minerals, v.45, pp.301–314. doi:10.1180/claymin.2010.045.3.301

Gupta, V., Hampton, M.A., Stokes, J.R., Nguyen, A.V. and Miller, J.D. (2011) Particle interactions in kaolinite suspensions and corresponding aggregate structures. Jour. Colloid Interface Sci., v.359, pp.95–103. https://doi.org/10.1016/j.jcis.2011.03.043

Hayashi, K., Fujisawa, H. and Holland, H.D (1997) Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta, v.61(19), 4115-37. https://doi.org/10.1016/s0016-7037(97)00214-7.

Johnston, C.T., Agnew, S.F. and Bish, D.L. (1990) Polarised single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clays and Clay Minerals, v.38, pp.573-583.

Jones, H.A. and Hockey, R.D. (1964) The geology of part of southwestern Nigeria. Geol. Surv. Nigeria Bull., v.31, pp.1-101

Jones, B and Manning, D.A. (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones, Chem. Geol., v.111(1–4), pp.111-129, https://doi.org/10.1016/0009-2541(94)90085-X.

Katte, V.Y. Ngapgue, F. and Tsang, J.M. (2019) Mineralogical, geochemical characterization and application of an alluvial clay material. SN Appl. Sci., https://doi.org/10.1007/s42452-019-0768-x

Kingston, D.R., Dishroon, C.P. and Williams, P.A. (1983) Global basin classification system. AAPG Bull., v.67, pp.2175–2193. https://doi.org/10.1306/AD460936-16F7-11D7-8645000102C1865D

Kreimeyer, R. (1987) Some notes on the firing color of clay bricks. Appl. Clay Sci., v.2, pp.175–183. https://doi.org/10.1346/CCMN.1990.0380602

Kulkarni, R.M., Chalageri, B.D., Narula, A. and Sachindran A. (2022) Denitrification performance of kaolin and modified kaolin for the treatment of nitrate contaminated water: isotherm and kinetic studies. Nanotechnol. Environ. Eng., v.7, pp.405–413. https://doi.org/10.1007/s41204-021-00213-1

LaIglesia, A. abd Aznar, A.J., (1996) Crystallinity variations in kaolinite induced by grinding and pressure treatments. Jour. Material Sci., v.31(17), pp.4671–4677. https://doi.org/10.1007/BF00366368

Lee, G. and Yeh, T.H. (2008) Sintering effects on the development of mechanical properties of ¦red clay ceramics. Materials Sci. Eng., v.485, pp.5–13.

Linares, C.F., Alfonso, L. and Rosa-Brussin, M. (2004) Modified Venezuelan kaolin as possible antacid drug. Jour. Appl. Sci., v.4(3), pp.472–476. https://doi.org/10.3923/jas.2004.472.476

López-Galindo, A., Viseras, C. and Cerezo, P. (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl. Clay Sci., v.36, pp.51-63. https://doi.org/10.1016/j.clay.2006.06.016

Mattioli, M., Giardini, L., Roselli, C. and Desideri, D. (2015) Mineralogical characterization of commercial clays used in cosmetics and possible risk for health. Appl. Clay Sci., https://doi.org/10.1016/j.clay.2015.10.023.

Mendelovici, E., Yariv, S. and Villalba, R. (1979) Iron-bearing kaolinite in Venezuelan laterites: I. Infrared spectroscopy and chemical dissolution evidence. Clay Minerals, v.14, pp.323-331. https://doi.org/10.1180/claymin.1979.014.4.08

Mohammed, S., Opuwari, M., Titinchi, S., Bata, T. and Mohammed, B.A. (2019) Evaluation of source rock potential and hydrocarbon composition of oil sand and associated clay deposits from the Eastern Dahomey Basin, Nigeria. Jour. African Earth Sci., v.160, pp.1–8. https://doi.org/10.1016/j.jafrearsci.2019.103603

Murray, H.H. (2007) Applied Clay Mineralogy. Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite–Sepiolite, and Common Clays, 1st ed.; Elsevier: Oxford, UK, p.189.

Murray, H.H. and Lyons, S.C., (1955) Correlation of paper-coating quality with degree of crystal perfection of kaolinite. Clay and Clay Minerals, v.4, pp.31–40. https://doi.org/10.1346/CCMN.1955.0040105

Murray, H.H. and Lyons, S.C. (1959) Further correlations of kaolinite crystallinity with chemical and physical properties. Clay and Clay Minerals, v.8, pp.11–17. https://doi.org/10.1346/CCMN.1959.0080104

Mustapha, S., Ndamitso, M.M., Abdulkareem, A.S. and Tijani, J.O., Mohammed, A.K., Shuaib, D.T. (2019) Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon, https://doi.org/10.1016/j.heliyon.2019.e02923.

Mustapha, S., Tijani, J.O., Ndamitso, M.M. Abdulkareem, S.A., Shuaib, D.T.,Mohammed A.K. and Sumaila, A. (2020) The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci. Rep., v.10, 13068. https://doi.org/10.1038/s41598-020-69808-z

NAFCON (1985) Tender Document for the Supply of Kaolin from Nigerian Sources, p.35, National Fertilizer Company of Nigeria Publication

Ndlovu, B., Farrokhpay, S., Forbes, E., Bradshaw, D. (2015) Characterization of kaolinite colloidal and flow behaviour via crystallinity measurements. Powder Tech., v.269, pp.505–512.

Ndukwe, V.A., Ogunyinka, B.O. and Abrakasa, S. (2015) Some aspect of the petroleum geochemistry of tar sand deposits in western Nigeria. Pyrex Jour. Geol. Min. Res., v.1(1), pp.001–006.

Nton, M.E., Eze, F.P. and Elueze, A.A. (2005) Aspects of Source rock evaluation and diagenetic history of the Akinbo shale, Eastern Dahomey Basin, South-western Nigeria. Nigerian Assoc. Petrol. Explor. Bull., v.19, pp.35–49.

Nton, M.E., Ikhane, P.R. and Tijani, M.N. (2009) Aspect of rock-eval studies of the Maastrichtian-Eocene sediments from subsurface, in the eastern Dahomey basin southwestern Nigeria. European Jour. Sci. Res., v.25, pp.417–427.

Okosun, E.A. (1998) Review of the early tertiary stratigraphy of southwestern Nigeria. Jour. Min. Geol., v.34, pp.27–35.

Olaremu, A.G. (2015) Physico-chemical characterization of Akoko mined kaolin clay. Jour. Mineral. Mater. Character. Eng., v.3, pp.353-409.

Omatsola, M. E. and Adegoke, O. S. (1981) Tectonic evolution and Cretaceous stratigraphy of the Dahomey Basin. Jour. Min. Geol., v.18, pp.130–137.

Oyebanjo, O., Bukalo, N. and Ekosse, G.I. (2021) Provenance and Paleoenvironmental Studies of Cretaceous African and South American Kaolins: Similarities and Differences. Minerals, https://doi.org/10.3390/min11101074

Oyebanjo, O., Ekosse, G.I. and Odiyo, J. (2020) Physico-Chemical, Mineralogical, and Chemical Characterisation of Cretaceous– Paleogene/Neogene Kaolins within Eastern Dahomey and Niger Delta Basins from Nigeria: Possible Industrial Applications. Minerals, v.10(8), 670; https://doi.org/10.3390/min10080670

Prost, R., Dameme, A., Huard, E., Driard, J. and Leydecker, J.P. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K. Clays and Clay Minerals, v.37, pp.464-468. https://doi.org/10.1346/CCMN.1989.0370511

Pruett, R.J. (2016) Kaolin Deposits and Their Uses: Northern Brazil and Georgia, USA. Appl. Clay Sci., v.131, pp.3–13.

Ptáèek, P., Opravil, T., Šoukal, F., Wasserbauer, J., Másilko, J. and Baráèek, J. (2013) The influence of structure order on the kinetics of dehydroxylation of kaolinite. Jour. European Ceramic Soc., v.33, pp.2793–2799.

Raghavan, P., Chandrasekhar, S. and Damodaran, A.D. (1997). Value addition of paper coating grade kaolins by the removal of ultrafine coloring impurities. Internat. Jour. Mineral Process., v.50, pp.307–316. https://doi.org/10.1016/S0301-7516(97)00040-9

Ramaswamy, S. and Raghavan, P. (2011).Significance of impurity minerals identification in the value addition of kaolin- a case study with reference to acidic kaolin from India. Jour. Mineral., v.10(11), pp.1007-1025.

Roser, B.P. and Korsch, R.J. (1988) Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chem. Geol., v.67, pp.119–139. https://doi.org/10.1016/0009-2541(88)90010-1

Sackett, T.E., Buddle, C.M. and Vincent, C. (2005) Effect of kaolin on fitness and behavior of Choristoneura rosaceana (Lepidoptera: tortricidae) larvae. Jour. Econo. Entomology, v.98(5), pp.1648–1653.

Santos, I., Costa, C., Quintela, A., Terroso, D., Ferraz1, E., Rocha, F., Dorzhieva, O., Krupskaya, V. and Vigasina, M. (2014) Mineralogical composition of sedimentary and residual kaolin deposits from Portugal Composição mineralógica de depósitos sedimentares e residuais de caulinos de Portugal. Comunicações Geológicas, v.101, pp.195-197

Subari, S. and Wahyudi, T. (2014) Improving tapin kaolin quality for white ware ceramic. Indonesia Min. Jour., v.17, pp.87–97.

Teh, E.J; Leong, Y.K., Liu, Y., Fourie, A.B. and Fahey, M. (2009) Differences in the rheology and surface chemistry of kaolin clay slurries: the source of the variations. Chem. Eng. Sci., v.64(17), pp.3817-3825. https://doi.org/10.1016/j.ces.2009.05.015

Vasilev, N.G., Golovko, L.V. and Ovcharenko, F.D. (1976) Investigation of cation-exchange capacity of kaolinite with different degrees of crystallinity. Colloid Jour., v.38(5), pp.761–766.

Vie, R., Azemaa, N., Quantin, J.C., Touraud, E. and Fouletier, M. (2007) Study of suspension settling: approach to determine suspension classification and particle interactions. Colloids and Surface A: Physicochemical and Engineering Aspects, v.298, pp.192–200. https://doi.org/10.1016/j.colsurfa.2006.10.074

Visser, J.N.J. and Young, G.M. (1990) Major element geochemistry and paleoclimatology of the Permo-Carboniferous glacigene Dwyka Formation and postglacial mudrocks in southern Africa. Paleogeog., Paleoclimat. Paleoecol., v.81, 49-57. https://doi.org/10.1016/0031-0182(90)90039-A

Wardhana, Y.W., Hasanah, A.N. and Primandini, P. (2014). Deformation and adsorption capacity of kaolin that is influenced by temperature variation on calcinations. Internat. Jour. Pharmacy and Pharmaceutical Sci., v.6(3), pp.1–2

William, L.B. and Haydel, S.E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. Internat. Geol. Rev., v.52(7/8), pp.745-770. https://doi.org/10.1080/00206811003679737.

Wilson, M.J. (1999) The origin and formation of clay minerals in soils: Past, Present and Future perspectives. Clay Minerals, v.34(1), pp.74–25. https://doi.org/10.1180/000985599545957

Wilson I.R., Halls C. & Spiro B. (1997) A comparison between the China Clay deposits of China and Cornwall. Proc. Ussher Society, v.9, pp.195–200.

Yanik, G. (2011) Mineralogical, crystallographic and technological characteristics of Yaylayolu kaolin (Kütahya, Turkey). Clay Minerals, v.46(3), pp.397–410. https://doi.org/10.1180/claymin.2011.046.3.397