Integrated Petrographic, Mineralogical, and Geochemical Study of the Upper Kaimur Group of Rocks, Son Valley, India: Implications for Provenance, Source Area Weathering and Tectonic Setting

Authors

  • Department of Geology, Aligarh Muslim University, Aligarh – 202 002
  • Department of Earth Sciences, IIT Kanpur, Kanpur - 208 016
  • Department of Geology, Aligarh Muslim University, Aligarh – 202 002

DOI:

https://doi.org/10.1007/s12594-017-0740-6

Abstract

The upper Kaimur Group (UKG) of the Vindhyan Supergroup in central India, primarily consists of three rock types-Dhandraul sandstone, Scarp sandstone and Bijaigarh shale. The present study aims to reconstruct the parent rock assemblages, their tectonic provenance, mineralogy, weathering intensity, hydraulic sorting and depositional tectonic setting. Samples from the UKG rocks representing the Dhandraul sandstone, Scarp sandstone and Bijaigarh shale were studied using a combination of petrographic, mineralogical, and geochemical techniques. Texturally, medium to coarse grained UKG sandstones are mature and moderate to well sorted. Deficiency of feldspars in these sandstones indicates that the rocks are extensively recycled from distant sources. Their average modal composition for Scarp (avg. Qt99 F0.2L0.8) and Dhandraul (avg. Qt99 F0.1L0.8) sandstones, classifies them as quartz arenite to sub-litharenite types, which is consistent with geochemical study. Major element concentrations revealed that sandstones have high SiO2, K2O > Na2O, and low Fe2O3, which are supported by the modal data. On the other hand, sandstone samples are enriched in most trace elements such as Ce, Sr, V, Sc and Zr and depleted in U and Th. The CIA values (43.17-76.48) of the UKG rocks indicate low to moderate weathering, either of the original source or during transport before deposition, which may have related to low-relief and humid climatic conditions in the source area. Further, petrographic and geochemical interpretations indicate that they are derived from craton interior to quartzose recycled sedimentary rocks and deposited in a passive continental margin. Therefore, granitic and low grade metamorphic rocks of Mahakoshal Group and Chotanagpur granite-gneiss, situated on the southern and south-eastern side of the Vindhyan basin are suggested as possible provenance for the UKG rocks.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2017-10-01

How to Cite

Quasim, M. A., Khan, I., & Ahmad, A. H. M. (2017). Integrated Petrographic, Mineralogical, and Geochemical Study of the Upper Kaimur Group of Rocks, Son Valley, India: Implications for Provenance, Source Area Weathering and Tectonic Setting. Journal of Geological Society of India, 90(4), 467–484. https://doi.org/10.1007/s12594-017-0740-6

References

Acharyya, S.K. (2003) A plate tectonic model for Proterozoic crustal evolution of Central Indian Tectonic Zone. Gond. Geol. Mag., Special Volume, v.7, pp.9–31.

Ahmad, I. and Chandra, R. (2013) Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. Jour. Asian Earth Sci., v.66, pp.73–89.

Akarish, A.I.M. and El-Gohary, A.M. (2008) Petrography and geochemistry of lower Paleozoic sandstones, East Sinai, Egypt: implications for provenance and tectonic setting. Jour. African Earth Sci., v.52, pp.43–54.

Akhtar, K. and Ahmad, A.H.M. (1991) Single cycle cratonic quartzarenites produced by tropical weathering: the Nimar Sandstone (Lower Cretaceous), Narmada Basin, India. Sed. Geol., v.71, pp.23-32.

Alam, M.M. (2002) Generic Provenance, tectonics and petrofacies evolution of sandstone, Jaisalmer Formation (Middle Jurassic), Rajasthan. Jour. Geol. Soc. India., v.59, pp.47-58.

Amireh, B.S. (1991) Mineral composition of the Cambrian-Cretaceous Nubian series of Jordan: provenance, tectonic setting and climatological implication. Sed. Geol., v.71, pp.99–119.

Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P. and Ramasamy, S. (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Jour. Sed. Res., v.74, pp.285–297.

Auden, J.B. (1933) Vindhyan sedimentation in the Son Valley. Mem. Geol. Surv. India., v.62, pp.141-250.

Azmi, R.J. (1998a) Discovery of Lower Cambrian small shelly fossils and brachiopods from the Lower Vindhyan of the Son Valley, Central India. Jour. Geol. Soc. India, v.52, pp.381-389.

Azmi, R.J. (1998b) Fossil discoveries in India. Science, 282, 627.

Azmi, R.J., Joshi, D., Tiwari, B.N., Joshi, M.N., Mohan, K. and Srivastava, S.S. (2007) (for 2006) Age of the Vindhyan Supergroup of Central India: An exposition of biochronology vs. geochronology. In: Sinha, D. (Ed.), Micropaleontology: Application in Stratigraphy and Paleoceanography. Narosa Publishing House, New Delhi, pp. 29-62.

Bahlburg, H. (1998) The geochemistry and provenance of Ordovician turbidites in the Argentine Puna. In: Pankhurst, R.J. and Rapela, C.W. (eds.), The Proto-Andean Margin of Gondwana. Geol. Soc. London, Special Publication, v.142, pp.127–142.

Banerjee, I. (1974) Barrier coastline sedimentation model and the Vindhyan example. Contributions to the Earth and Planetary Sciences Golden Jubilee Volume, Quarterly Jour. Min. Metall. Soc. India, v.46, pp.101-127.

Basu, A. (1985) Reading Provenance from detrital quartz. In: Zuffa, G.G. (Ed.), Provenance of Arenites. Reidel Publishing Company, pp. 231-247.

Basu, A., Young, S., Suttner, L.J., James, W.C. and Mack, C.H. 1975, Reevaluation of the use of Undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Jour. Sed. Petrol., v.45, pp.873–882.

Bengtson, S., Belivanova, V., Rasmussen, B., Whitehouse, M. (2009) The controversial "Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proceedings of the National Academy of Sciences of the United States of America, v.106, pp.7729–7734.

Bhatia, M.R. (1983) Plate tectonics and geochemical composition of sandstones. Jour. Geol., v.91, pp.611–627.

Bhatia, M.R. and Crook, K.W. (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, v.92, pp.181–193.

Bhattacharya, A. and Morad, S. (1993) Proterozoic braided ephemeral fluvial deposits: an example from the Dhandraul Sandstone Formation of the Kaimur Group, Son Valley, Central India. Sediment. Geol., v.84, pp.101-114.

Bhattacharyya, A. and Pal, T. (1986) Kaimur Sandstone along Chunar– Mirzapur Belt, Mirzapur District, Uttar Pradesh: A possible Proterozoic braided river deposit. Jour. Indian Assoc. Sedimentologists, v.6, pp.76– 92.

Bose, P.K., Sarkar, S., Chakraborty, S. and Banerjee, S. (2001) Overview of Meso- to Neoproterozoie evolution of the Vindhyan basin, Central India (1.4-0.55 Ga). Sediment. Geol., v.141, pp.395–419.

Brasier, M.D. (1998) From deep time to late arrivals. Nature, v.395, pp.547-548.

Burnett, D.J. and Quirk, D.G. (2001) Turbidite provenance in the Lower Paleozoic Manx Group, Isle of man; implications for the tectonic setting of Eastern Avalonia. Jour. Geol. Soc. London, v.158, pp.913–924.

Cassinis, G., Elter, G., Rau, A. and Tongiorgi, M. (1979) A tectofacies of the Alpine-Mediterranean, southern Europe. Mem. Geol. Italy, v.20, pp.135–149.

Chakraborty, C. (1996) Sedimentary records of erg development over a braidplain: Proterozoic Dhandraul Sandstone. Geol. Soc. India Mem., v.36, pp.77–99.

Chakraborty, C. (2006) Proterozoic intracontinental basin: the Vindhyan example. Jour. Earth Syst. Sci., v.115, pp.3-22.

Chakraborty, C. and Bose, P.K. (1992) Rhythmic shelf storm beds: Proterozoic Kaimur Formation, India. Sediment. Geol., v.77, pp.249–268.

Chamley, H. (1989) Clay sedimentology. Springer, Berlin, pp.623.

Cox, R. and Lowe, D.R. (1995) A conceptional review of regional scale controls on the composition of clastic sediments and the co-evaluation of continental blocks and their sedimentary cover. Jour. Sed. Res., v.65, pp.1-12.

Cox, R., Lowe, D.R. and Cullers, R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, v.59, pp.2919–2940.

Crawford, A.R. and Compston, W. (1970) The age of Vindhyan system of peninsular India; Quart. Jour. Geol. Soc. London, v.125, pp.351–371.

Cullers, R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, v.51, pp.181–203.

Deb, M., Thorpe, R. and Krstic, D. (2002) Hindoli Group of rocks in the Eastern Fringe of the Aravalli–Delhi Orogenic belt-Archean secondary greenstone belt or Proterozoic supracrustals? Gond. Res., v.5, pp.879– 883.

Dickinson, W.R. (1970) Interpreting detrital modes of greywacke and arkose. Jour. Sed. Petrol., v.40, pp.695–707.

Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, G.G. (Ed.), Provenance of Arenites. Reidel Publishing Company, Reidel, pp. 231–247.

Dickinson, W.R. and Suczek, C.A. (1979) Plate tectonics and sandstone compositions. Amer. Assoc. Petrol. Geol. Bull., v.63, pp.2164–2182.

Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A., Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Jour. Geol. Soc. America, v.94, pp.222–235.

Dutta, B. (2005) Provenance, tectonics and palaeoclimate of Proterozoic Chandarpur sandstones, Chattisgarh basin: A petrographic view. Jour. Earth Syst. Sci., v.114, pp.227–245.

Emilia, L. and Arribas, J. (2004) Sand composition in an Iberian passivemargin fluvial course: the Tajo River. Sedim. Geol., v.171, pp.261–281.

Eriksson, P.G., Schreiber, U.M., Reczko, B.F. and Snyman, C.P. (1994) Petrography and geochemistry of sandstones interbedded with the Rooiberg Felsite Group (Transvaal sequence, South Africa): implication for provenance and tectonic setting. Jour. Sedim. Res., v.A64, pp.836–846.

Fedo, C.M., Nesbitt, H.W. and Young, G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for weathering conditions and provenance. Geology, v.23, pp.921–924.

Floyd, P.A. and Leveridge, B.E. (1987) Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Jour. Geol. Soc. London, v.144, pp.531–542.

Folk, R.L. (1980) Petrology of Sedimentary Rocks. Hampbill Publishing Company, Texas, pp. 182.

Franzinelli, E. and Potter, P.E. (1983) Petrology, chemistry and texture of modern river sands, Amazon River system. Jour. Geol., v.91, pp.23–39.

Gazzi, P. (1966) Le arenariedelflyschsopracretaceodell'Appenninomodensese: Correlazioni con ilflysch di Monghidoro. Mineral. Petrograph. Acta, v.12, pp.69–97.

Ghandour, I.M., Harue, M. and Wataru, M. (2003) Mineralogical and chemical characteristics of Bajocian-Bathonian shales, G. Al-Maghara, North Sinai, Egypt: climatic and environmental significance. Geochem. Jour., v.37, pp.87–108

Ghosh, S., Sarkar, S. and Ghosh, P. (2012) Petrography and major element geochemistry of the Permo Triassic sandstones, central India: implications for provenance in an intracratonic pull-apart basin. Jour. Asian Earth Sci., v.43, pp.207–240.

Gopalan, K., Kumar, S. and Vijayagopala, B. (2013) Depositional history of the Upper Vindhyan succession, central India: Time constraints from PbPb isochron ages of its carbonate components. Precambrian Res., v.233, pp.108-117

Gregory, L.C., Meert, J.G., Pradhan, V., Pandit, M.K., Tamrat, E. and Malone, S.J. (2006) A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: Implications for the age of the Upper Vindhyan Supergroup. Precamb. Res., v.149, pp.65-75.

Hallam, A., Grose, J.A. and Ruffell, A.H. (1991) Paleoclimatic significance of changes in claymineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.81, pp.173–187.

Harnois, L. (1988) The CIW index: A new chemical index of weathering. Sedim. Geol., v.55, pp.319–322.

Hayashi, K.I., Fujisawa, H., Holland, H.D. and Ohmoto, H. (1997) Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta, v.61, pp.4115–4137.

Herron, M.M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. Jour. Sedim. Petrol., v.58, pp.820–829.

Hofer, G., Wagreich, M. and Neuhuber, S. (2013) Geochemistry of fine-grained sediments of the Upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): implications for paleoenvironmental and provenance studies. Geosci. Front., v.4, pp.449-468.

Jafar, S.A., Akhtar, K., and Srivastava, V.K. (1966) Vindhyan paleocurrents and their bearing on the northern limit of the Vindhyan sedimentation – a preliminary note. Bull. Geol. Soc. India, v.3, pp.82–84.

Jin, Z., Li, F., Cao, J., Wang, S. and Yu, J. (2006) Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting and catchment weathering. Geomorphology, v.80, pp.147–163.

Kale, V.S. and Phansalkar, V.G. (1991) Purana basins of peninsular India: a review. Basin Research, v.3, pp.1–36.

Kerr, R.A. (1998a) Fossils challenge age of billion-years-old animals. Science, v.282, pp.601-602.

Khanchuk, A.I., Nevstruev, V.G., Berdnikov, N.V. and Nechaev, V.P. (2013) Petrochemical characteristics of carbonaceous shales in the eastern Bureya massif and their precious-metal mineralization. Russian Geology and Geophysics, v.54, pp.627–636.

Kronberg, B.I., Nesbitt, H.W. and Fyfe, W.S. (1987) Mobilities of alkalis, alkaline earths and halogens during weathering. Chem. Geol., v.60, pp.41-49.

Kroonenberg, S.B. (1994) Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. Proceedings of the 29th Int. Geol. Cong., Part A, pp. 69–81.

Kumar, A., Gopalan, K. and Rajagopalan, G. (2001) Age of the Lower Vindhyan sediments, central India. Curr. Sci., v.81, pp.806–809.

Kumar, A., Kumari, P., Dayal, A.M., Murthy, D.S.N. and Gopalan, K. (1993) Rb-Sr ages of Proterozoic kimberlites of India: evidence for contemporaneous emplacements. Precamb. Res., v.62, pp.227-237.

Laird, M.G. (1972) Sedimentology of Greenland Group in the Paparoa Range, West Coast, South Island, New Zealand. Jour. Geol. Geophy., v.15, pp.372– 393.

Malone, S.J., Meert, J.G., Banerjee, D.M., Pandit, M.K., Tamrat, E., Kamenov, G.D., Pradhan, V.R. and Sohl, L.E. (2008) Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma closure age for the Purana Basins? Precamb. Res., v.164, pp.137-159.

Marsaglia, K.M. and Ingersoll, R.V. (1992) Compositional trends in arc-related, deep-marine sand and sandstone: a reassessment of magmatic-arc provenance. Geol. Soc. Ame. Bull., v.104, pp.1637-1649.

Mcbirney, A.R. (1983) Igneous Petrology: San Francisco, Freeman, Cooper, pp. 504.

Mclennan, S.M. (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophy. Geosyst., v.2, C000109.

Mclennan, S.M., Hemming, S., Mcdaniel, D.K. and Hanson, G.N. (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: Basu, A. and Johnsson, M.J., (Ed.), Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Ame., Special Paper, pp.21–40.

Mclennan, S.M., Taylor, S.R, and Eriksson, K.A. (1983) Geochemistry of Archean shales firom Pilbara Supergroup, western Australia. Geo. Cosmo. Acta, v.47, pp.1211-1222.

Meenal, M. and Shinjana, S. (2008a) Geochemical Control on Grain Size Variation in Sedimentary Rocks of Kaimur Group from Vindhyan Supergroup, Markundi Ghat, Sonbhadra District (U.P.). [M]. 95th Indian Science Congress, Vishakapatnam.

Meenal, M. and Shinjana, S. (2008b) Geochemistry of sandstone and shales from Kaimur Group, Son valley, Central India: Implications for provenance, tectonic setting and palaeoenvironment. In Terrestrial Planets Evolution Through Time Held at Physical Research Laboratory, Ahmedabad, [M]. p. 208–209.

Misra, R.C. (1969) The Vindhyan System [M]. Presidential address, Proc. 56th Indian Science Congress. 2, 111–142.

Moore, D.M. and Reynolds, R.C. (1997) X-ray Diffraction and the Identification and analysis of Clay Minerals. Oxford University press, Oxford, New York, pp. 378.

Morad, S., Battacharya, A. and Al-Aasam, L.S. (1991) Daigenesis of quartz in Late Proterozoic Kaimur Sandstones, Son Valley, India. Jour. Sedim. Geol., v.73, pp.209–225.

Naqvi, S.M. and Rogers, J.J.M. (1987) Precambrian Geology of India. Oxford University Press, Oxford, pp. 461.

Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299, pp.715–717.

Nesbitt, H.W. and Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, v.48, pp.1523–1534.

Nesbitt, H.W. and Young, G.M. (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology, v.42, pp.341-358.

Nesbitt, H.W., Markovics, G. and Price, R.C. (1980) Chemical processes affecting alkalies and alkaline earths during continental weathering. Geochim. Cosmochim. Acta, v.44, pp.1659–1666.

Perri, F. (2014) Composition, provenance and source weathering of Mesozoic sandstones from Western-Central Mediterranean Alpine Chains. Jour. African Earth Sci., v.91, pp.32–43.

Pettijohn, F.J. (1975) Sedimentary rocks, 3rd ed. Harper and Row, New York, pp. 628.

Pettijohn, F.J., Potter, P.E. and Siever, R. (1972) Sand and sandstones. SpringerVerlag, New York.

Pettijohn, F.J., Potter, P.E., and Seiver, R. (1987) Sand and Sandstone. SpringerVerlag, New York, pp. 533.

Potter, P.E., (1978) Petrology and chemistry of modern Big River sands. Jour. Geol., v.86, pp.423–449.

Prakash, R. and Dalela, I.K. (1982) Stratigraphy of the Vindhyan in Uttar Pradesh: A brief review. In: Valdiya, K.S., Bhatia, S.B. and Gaur, V.K. (Ed.), Geology of Vindhyanchal. Delhi: Hindustan Publishing Corporation, pp. 55-79.

Quasim, M.A., Ahmad, A.H.M. and Ghosh, S.K., (2017) Depositional environment and tectono-provenance of Upper Kaimur Group sandstones, Son Valley, Central India. Arab. Jour. Geosci., v.10(4).

Rasmussen, B., Bose, P.K., Sarkar, S., Banerjee, S., Fletcher, I.R. and Mc Naughton, N.J., (2002) 1.6Ga U-Pb Zircon ages for the Chorhat sandstone, Lower Vindhyan, India: possible implication for early evolution of animals. Geology, v.30, pp.103-106.

Ray, J.S. (2006) Age of the Vindhyan supergroup: a review of recent findings. Jour. Earth Syst. Sciences, v.115, pp.149–160.

Ray, J.S., Martin, M.W., Veizer, J. and Bowring, S.A. (2002) U-Pb zircon dating and Sr isotope systematics of Vindhyan Supergroup, India. Geology, v.30, pp.131-134.

Ray, L., Senthil, K.P., Reddy, G.K., Roy, S., Rao, G.V., Srinivasan, R. and Rao, R.U.M. (2003) High mantle heat flow in a Precambrian granulite province: evidence from southern India. Jour. Geophy. Res., 108(B2), 2084.

Roser, B.P. and Korsch, R.J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Jour. Geol., v.94, pp.635–650.

Roser, B.P. and Korsch, R.J. (1988) Provenance signatures of sandstone mudstone suites determined using discrimination function analysis of major element data. Chemical Geology, v.67, pp.119–139.

Rudnick, R.L. and Gao, S. (2003) The Composition of the Continental Crust. In: Rudnick, R.L. (eds.), The Crust, Treatise on Geochemistry. Elsevier– Pergamon, Oxford–London, 3, 1-64.

Sarangi, S., Gopalan, K. and Kumar, S. (2004) Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precamb. Res., v.132, pp.107-121.

Sastry, M.V.A. and Moitra, A.K. (1984) Vindhyan stratigraphy-a review. Geol. Sur. India Mem., v.116, pp.109-148.

Seilacher, A., Bose, P.K. and Pflüger, F. (1998) Triploblastic animals more than 1 billion years age: trace fossil evidence from India. Science, v.282, pp.80-83.

Shadan, M. and Hosseini-Barzi, M. (2013) Petrography and geochemistry of the Ab-e-Haji Formation in central Iran: implications for provenance and tectonic setting in the southern part of the Tabas block. Revista Mexicana de Ciencias Geológicas, v.30, pp.80–95.

Sheldon, N.D. and Tabor, N.J. (2009) Quantitative paleoenvironmental and paleo-climatic reconstruction using paleosols. Earth Sci. Rev., v.95, pp.1– 52.

Singh, I.B. (1980) Precambrian sedimentary sequences of India: Their peculiarities and comparison with modern sediment. Precamb. Res., v.12, pp.411–436.

Soni, M.K., Chakraborty, S. and Jain, V.K. (1987) Vindhyan Super Group–a review. Geol. Soc. India Mem., v.6, pp.87-138.

Srodon, J. (2006) Identification and quantitative analysis of clay minerals, Elsevier, Developments in Clay Science 1.

Suttner, L.J. and Dutta, P.K. (1986) Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Jour. Sedim. Petrol., v.56, pp.329-345.

Suttner, L.J., Basu, A. and Mack, G.H. (1981) Climate and the origin of quartz arenites. Jour. Sedim. Petrol., v.51, pp.235–246.

Taylor, S.R. and Mclennan, S.M. (1985) The Continental Crust. Its Composition and Evolution; Oxford Blackwell, pp.311.

Trevena, A.S. and Nash, W.P. (1981) An electron microprobe study of detrital feldspar. Jour. Sedim. Petrol., v.51, pp.137–150.

Valloni, R. and Mezzardi, G. (1984) Compositional suites of terrigenous deep sea sands of the present continental margins. Sediment., v.31, pp.353-364.

Vdacny, M., Vozarova, A. and Vozar, J. (2013) Geochemistry of the Permian sandstones from the Maluzina Formation in the Male Karpaty Mts (Hronic Unit, Western Carpathians, Slovakia): implications for sourcearea wea-thering, provenance and tectonic setting. Geol. Carpath., v.64, pp.23–38.

Venkatchala, D.S., Sharma, M. and Shukla, M. (1996) Age and life of Vindhyans-facts and conjectures. In: Bhattacharya, A. (Ed.), Recent Advances in Vindhyan Geology. Mem. Geol. Soc. India, v.36, pp.37–166.

Weltje, G.J., Meijer, X.D. and De Boer, P.L. (1998) Stratigraphic inversion of siliciclastic basin fills: a note on the distinction between supply signals resulting from tectonic and climatic forcing. Bas. Res., v.10, pp.129– 153.

Yan, Y., Xia, B., Lin, G., Cui, X., Hu, X., Yan, P. and Zhang, F. (2007) Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary. Sedimentary Geology, v.197, pp.127–140.

Young, G.M. and Nesbitt, H.W. (1998) Processes controlling the distribution of Ti and AI in weathering profiles. Siliciclastic sediments and sedimentary rocks. Jour. Sed. Res., v.68(3), pp. 448-455.

Zimmermann, U. and Bahlburg, H. (2003) Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology, v.50, pp.1079–1104.

Most read articles by the same author(s)

1 2 3 > >>