Numerical Modeling of the Seasonal Dynamic Characteristics of the Koxkar Glacier, in West Tianshan, China

Authors

  • Lanzhou Institute of Seismology, Chinese Seismological Bureau, Lanzhou 730000
  • Gansu Desert Control Research Institute/State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating- Gansu Desert Control Research Institute, Lanzhou 730070
  • The Institute of International rivers and Eco-Security, Yunnan university, Kunming, 730000
  • Lanzhou Institute of Seismology, Chinese Seismological Bureau, Lanzhou 730000
  • Lanzhou Institute of Seismology, Chinese Seismological Bureau, Lanzhou 730000

DOI:

https://doi.org/10.1007/s12594-018-1041-4

Abstract

Glaciers have very different dynamic characteristics during the ablation and accumulation seasons. A dynamic model to study the flow of the Koxkar Glacier is used. Ice velocity, ice viscosity, and the stress variation at different depths were studied. The aim was to compare the change in the glacier's physical characteristics with changes in air temperature, analyze the movement mechanism at different temperatures in different seasons, and identify why temperature is the main driving force of glacier movement and change. The results show that the surface stresses have similar trends in different seasons, and that the stress in winter is larger than that in summer. This causes the ice body to break and promotes crack formation. Ice viscosity has an obvious seasonal variation, and this is especially noticeable for near-surface ice viscosity. The stress at the bottom did not change much at different temperatures. This indicates that the stress at the bottom is mainly affected by glacier morphology, hydrological characteristics, and geothermal flow.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2018-10-01

How to Cite

Wuzhen, ., Huiwen, Z., Shiyin, L., Junyin, C., & Dachen, T. (2018). Numerical Modeling of the Seasonal Dynamic Characteristics of the Koxkar Glacier, in West Tianshan, China. Journal of Geological Society of India, 92(4), 457–464. https://doi.org/10.1007/s12594-018-1041-4

References

Aizen, V. B., V. A. Kuzmichenok, et al. (2006) Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Annals of Glaciol., v.43(1), pp.202-213.

Benn, D.I., Hulton, N.R.J., et al. (2007) ‘Calving laws','sliding laws' and the stability of tidewater glaciers. Annals of Glaciol., v.46(1), pp.123-130.

Blatter, H. (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stresses. Jour. Glaciol. v.41(138), pp.333-344.

Bolch, T. (2007) Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary Change, v.56(1-2), pp.1-12.

Brí¦dstrup, C.F., Egholm, D.L., et al. (2015) Basal shear stress under alpine glaciers: Insights from experiments using the iSOSIA and Elmer/ICE models Earth Surface Dynamics. Discussions, v.3(4), pp.1143-1178.

Braithwaite, R.J. (2008) Temperature and precipitation climate at the equilibrium-line altitude of glaciers expressed by the degree-day factor for melting snow. Jour. Glaciol., v.54(186), pp.437-444.

Bueler, E. and Brown, J. (2009) Shallow shelf approximation as a "sliding law'' in a thermomechanically coupled ice sheet model. Jour. Geophys. Res., Earth Surface, v.114(F3), pp.1-21.

Duan, K., Yao, T., et al. (2012) Numerical simulation of Urumqi Glacier No. 1 change and its response to climate change analysis. Sci. Bull., v.57(36), pp.3511-3515.

Flowers, G., Roux, N., et al. (2011) Present dynamics and future prognosis of a slowly surging glacier. The Cryosphere, v.5, pp.299-313.

Flowers, G. E., Björnsson, H. et al. (2004) A coupled sheet-conduit mechanism for jökulhlaup propagation. Geophys. Res. Lett., v.31(5), pp.L05401.

Flowers, G. E. and Clarke, G. K. C. (2000) An integrated modelling approach to understanding subglacial hydraulic release events. Annals of Glaciology, v.31(1), pp.222-228.

Fortt, A.L. and Schulson, E.M. (2011) Does the normal stress parallel to the sliding plane affect the friction of ice upon ice? Jour. Glaciol., v.57(205), pp.949-953.

Gaidos, E., Glazer, B., et al. (2007) A simple sampler for subglacial water bodies. Jour. Glaciol., v.53, pp.157-158.

Greve, R. and H. Blatter (2009) Large-Scale Dynamics of Ice Sheets 61.

Gulley, J., Benn, D. et al. (2009) A cut-and-closure origin for englacial conduits in uncrevassed regions of polythermal glaciers Jour. Glaciol., v.55(189), pp.66-80.

Han, H., Liu, S., et al. (2010) Glacial runoff characteristics of the Koxkar Glacier, Tuomuer-Khan Tengri Mountain Ranges, China. Environ. Earth Sci., v.61(4), pp.665-674.

Herzfeld, U.C. and Mayer, H. (2003) Seasonal comparison of ice-surface structures in the ablation area of Jakobshavn Isbrí¦ drainage system, West Greenland. Annals of Glaciology, v.37(1), pp.199-206.

Hindmarsh, R.C.A. and Meur, E.L. (2001) Dynamical processes involved in the retreat of marine ice sheets. Jour. Glaciol., v.47(157), pp.271-282.

Hodge, S.M. (1974) Variations in the sliding of a temperate glacier. Jour. Glaciol., v.13, pp.349-369.

Hooke, R. L. (1981) Flow law for polycrystalline ice in glaciers – comparison of theoretical predictions, laboratory data and field measurements. Rev. Geophys., v.19(4), pp.664-672.

Hooke, R.L.B. (2005) Principles of glacier mechanics, Cambridge University Press.

Iken, A., Rothlisberger, H., et al. (1983) The uplift of Unteraargeltscher at the beginning of the melt season”a consequence of water storage at the bed? Jour. Glaciol., v.29, pp.28-47.

Irvine Fynn, T., Moorman, B. et al. (2006) Seasonal changes in ground penetrating radar signature observed at a polythermal glacier, Bylot Island, Canada. Earth Surface Processes and Landforms, v.31(7), pp.892-909.

JosefinAhlkrona, PerLötstedt, et al. (2016) Dynamically coupling the nonlinear Stokes equations with the shallow ice approximation in glaciology: Description and first applications of the ISCAL method Jour. Computational Physics, v.308, pp.1-19.

Kavanaugh, J.L. and Clarke, G.K.C. (2001) Abrupt glacier motion and reorganization of basal shear stress following the establishment of a connected drainage system. Jour. Glaciol., v.47(158), pp.472-480.

Korsgaard, N.J., Schomacker, A., et al. (2015) Spatial distribution of erosion and deposition during a glacier surge: Brúarjökull, Iceland Geomorphology, v.250, pp.258-270.

Kutuzov, S. and Shahgedanova, M. (2009) Glacier retreat and climatic variability in the eastern Terskey-Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century. Global and Planetary Change, v.69(1-2), pp.59-70.

Macayeal, D. R. (1992) The basal stress distribution of ice stream – E Antarctica, inferred by control methods. Jour. Geophys. Res., Solid Earth, v.97(B1), pp.595-603.

MacGregor, K. R., C. A. Riihimaki, et al. (2005) Spatial and temporal evolution of rapid basal sliding on Bench Glacier, Alaska, USA Jour. Glaciol., v.51(172), pp.49-63.

Maohuang, H., W. Zhongxiang, et al. (1982) On the temperature regime of continental-type glaciers in China. Jour. Glaciol., v.28(98), pp.117-128.

Mihalcea, C., Mayer, C., et al. (2008) Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debriscovered Baltoro glacier, Karakoram, Pakistan. Annals of Glaciol., v.48(1), pp.49-57.

Nye, J. (1965) The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. Jour. Glaciol., v.5, pp.661-690.

Palmer, S., A. Shepherd, et al. (2009) Ice velocity measurements of Langjokull, Iceland, from interferometric synthetic aperture radar (InSAR). Jour. Glaciol., v.55(193), pp.834-838.

Paoli, L. D. and G. E. Flowers (2009) Dynamics of a small surge-type glacier using one-dimensional geophysical inversion. Jour. Glaciol., v.55(194), pp.1101-1112.

Parizek, B. R., K. Christianson, et al. (2013) Dynamic (in)stability of Thwaites Glacier, West Antarctica. Jour. Geophys. Res., Earth Surface, v.118(2), pp.638-655.

Paterson, W.S.B. (1994) The physics of glaciers. Elsevier, Oxford, New York and Tokyo, 480p.

Pattyn, F. (2002) Transient glacier response with a higher-order numerical ice-flow model. Jour. Glaciol., v.48(162), pp.467-477.

Pattyn, F., S. D. Brabander, et al. (2005) Basal and thermal control mechanisms of the Ragnhild glaciers, East Antarctica. Annals of Glaciol., v.40(1), pp.225-231.

Pettit, E.C., Jacobson, H. P. et al. (2003) Effects of basal sliding on isochrones and flow near an ice divide. Annals of Glaciol., v.37(1), pp.370-376.

Pettit, E.C., Waddington, E.D. et al. (2011) The crossover stress, anisotropy and the ice flow law at Siple Dome, West Antarctica. Jour. Glaciol., v.57(201), pp.39-52.

Price, S.F., Waddington, E.D. et al. (2007) A full-stress, thermomechanical flow band model using the finite volume method Jour. Geophys. Res., Earth Surface, v.112(F3).

Purdie, H.L., M. S. Brook, et al. (2008) Seasonal Variation in Ablation and Surface Velocity on a Temperate Maritime Glacier: Fox Glacier, New Zealand Arctic, Antarctic, and Alpine Research 40(1): 140-147.

Quincey, D., Copland, L. et al. (2009) Ice velocity and climate variations for Baltoro Glacier, Pakistan. Jour. Glaciol., v.55(194), pp.1061-1071.

Rasmussen, L. and Andreassen, L. (2005) Seasonal mass-balance gradients in Norway. Jour. Glaciol., v.51(175), pp.601-606.

Rasmussen, L., Conway, H. et al. (2011) Surface mass balance, thinning and iceberg production, Columbia Glacier, Alaska, 19482007 Jour. Glaciol., v.57(203), pp.431-440.

Reid, T.D. and Brock, B.W. (2014) Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy. Jour. Glaciol., v.60, pp.3-13.

Reinardy, B.T I., Larter, R.D. et al. (2011) Streaming flow of an Antarctic Peninsula palaeo-ice stream, both by basal sliding and deformation of substrate. Jour. Glaciol., v.57(204), pp.596-608.

Rowan, A. V., D. L. Egholm, et al. (2015) Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya. Earth Planet. Sci. Lett., v.430, pp.427-438.

Saito, F., Abe-Ouchi, A. et al. (2003) Effects of first-order stress gradients in an ice sheet evaluated by a three-dimensional thermomechanical coupled model. Annals of Glaciol., v.37(1), pp.166-172.

Scherler, D., Bookhagen, B. et al. (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, v.4(3), pp.156-159.

Schneeberger, C., Blatter, H. et al. (2003) Modelling changes in the mass balance of glaciers of the northern hemisphere for a transient 2hCO2 scenario Jour. Hydrol., v.282(1-4), pp.145-163.

Schoof, C. (2005) The effect of cavitation on glacier sliding Proceedings of the Royal Society – Mathematical Physical and Engineering Sciences, v.461(2055), pp.609-627.

Seddik, H., GREVE, R., et al. (2012) Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice. Jour. Glaciol., v.58(209), pp.427-440.

Shangguan, D., Bolch, T., et al. (2014) Elevation changes of Inylchek Glacier during 1974–2007, Central Tian Shan, Kyrgyzstan derived from remote sensing data. The Cryosphere Discussions, v.8(3), pp.2573-2610.

Stearns, L.A. (2011) Dynamics and mass balance of four large East Antarctic outlet glaciers. Annals of Glaciol., v.52(59), pp.116.

Su, Z. and Shi, Y. (2002) Response of monsoonal temperate glaciers to global warming since the Little Ice Age. Quaternary Internat., v.97, pp.123-131.

Sund, M., Lauknes, T.R. et al. (2014) Surge dynamics in the Nathorstbreen glacier system, Svalbard Cryosphere, v.8(2), pp.623-638.

Thibert, E., N. Eckert, et al. (2013) Climatic drivers of seasonal glacier mass balances: an analysis of 6 decades at Glacier de Sarennes (French Alps). Cryosphere, v.7(1), pp.47-66.

Thibert, E. and Vincent, C. (2009) Best possible estimation of mass balance combining glaciological and geodetic methods. Annals of Glaciol., v.50(50), pp.112-118.

Truffer, M., Motyka, R.J. et al. (2009) Terminus dynamics at an advancing glacier: Taku Glacier, Alaska. Jour. Glaciol., v.55(194), pp.1052-1060.

Van de Berg, W., M. Van den Broeke, et al. (2005) Characteristics of the Antarctic surface mass balance, 19582002, using a regional atmospheric climate model. Annals of Glaciol., v.41(1), pp.97-104.

Wang, P., Li, Z., et al. (2011) Ice surface-elevation change and velocity of Qingbingtan glacier No. 72 in the Tomor region, Tianshan Mountains, central Asia. Jour. Mountain Sci., v.8(6), pp.855-864.

Xin, W., Shiyin, L., et al. (2012) Thermal regime of a supraglacial lake on the debris-covered Koxkar Glacier, southwest Tianshan, China Environmental Earth Sci., v.67, pp.175-183.

Xu, J., Liu, S., et al. (2013) Recent Changes in Glacial Area and Volume on Tuanjiefeng Peak Region of Qilian Mountains, China. PloS one, v.8(8), e70574.

YP, L., H. SG, et al. (2006) Distribution features of borehole temperatures in the Miaoergou Flat-topped Glacier, East Tianshan Mountains. Jour. Glaciol. Geocryol., v.28(5), pp.668-671.

Zagorodnov, V., Nagornov, O., et al. (2006) Influence of air temperature on a glacier's active-layer temperature. Annals of Glaciol., v.43(1), pp.285291.

Zhang, T., Xiao, C. et al. (2013) Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya. Jour. Glaciol. v.59(215), pp.438-448.

Zhang, Y., Fujita, K. et al. (2010) Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier: Hailuogou glacier, China. Jour. Glaciol., v.56(195), pp.65-74.

Zhao, L., Tian, L. et al. (2014) Numerical simulations of Gurenhekou glacier on the Tibetan Plateau. Jour. Glaciol., v.60(219), pp.71-82.