Pedogenesis and Mineralogy of Alluvial Soils from Semi-Arid Southeastern Part of Rajasthan in Aravalli Range, India

Authors

  • ICAR-National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur – 440 033
  • Indian Institute of Soil and Water Conservation, Research Centre, Udhagamandalam - 643 004
  • ICAR-NBSS&LUP, Regional Centre, Hebbal, Bangalore - 560 024

DOI:

https://doi.org/10.1007/s12594-020-1386-3

Abstract

Three representative alluvial soils were studied from Kothari river basin of Bhilwara district in southeast Rajasthan to assess degree of chemical weathering and pedogenesis. Morphological, geochemical, mineralogical and other analytical investigations were carried out. Soils were classified as Entisols and Inceptisols. These soils are mostly sandy with more than 50% of fine and medium sand fractions, silt to clay ratio more than 0.45 and little textural variation suggesting more uniform weathering. These soils are slight to strongly alkaline with high exchangeable sodium (>15%) and cation exchange capacity less than 10 cmol(+)kg-1. Mineralogical investigations showed the dominance of micas and smectites in Pedon 1 (P1) and Pedon 2 (P2) and increase of smectites and micas in Bw3 horizon of P3 under strong alkalinity and high silica activity with limited lessivage. The low chemical index of alteration (CIA) in soils further indicated an incipient pedogenesis with a relative proportion of mica-smectite composition. The A-CNK-FM diagram shows abundance of CaO + Na2O + K2O as against Fe2O3+ MgO components under limited leaching environment and chemical weathering. The results of bivariate plot of SiO2 to (Al2O3 + K2O + Na2O) indicated the past weathering which influenced by prevailing arid climate in the region.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2020-01-01

How to Cite

Sharma, R. P., Raja, P., & Bhaskar, B. P. (2020). Pedogenesis and Mineralogy of Alluvial Soils from Semi-Arid Southeastern Part of Rajasthan in Aravalli Range, India. Journal of Geological Society of India, 95(1), 59–66. https://doi.org/10.1007/s12594-020-1386-3

References

Abdou, A.A. and Shehata, M.G. (2007) Geochemical study of the shales of Gebel Ghorabi Member, Bahariya Oasis, western Desert, Egypt. Australian Jour. Basic Appld. Sci., v.1, pp.553-560.

Adams, J.S., Kraus, M.J. and Wing, S.L. (2011). Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.309, pp.358–366.

Aoudjit, M., Robert, M., Elsass, F. and Curmi, P. (1995) Detailed study of smectite genesis in granitic saprolites by analytical electron microscopy. Clay Minerals, v.30, pp.135-147.

Bakliwal, P.C. and Wadhawan, S.K. (2003) Geological evolution of Thar Desert in India-issues and prospects. Proc. Ind. Nat. Academy, Part A, v.69 (2), pp.151-166.

Bhaskar, B.P., Baruah, U., Vadivelu, S. and Butte, P.S. (2005) Characterization of soils in Bil environs of Brahmaputra valley in Jorhat district, Assam for land use Interpretations. Jour. Indian Soc. Soil Sci., v.52(3), pp.3-10.

Bhaskar, B.P., Reddy, R.S., Budhihal, S.L., Challa, O., Anantwar, S.G., Nasare, R.A., Arti koyal, Gajbhiye, K.S. and Velatutham, M. (2000) Evaluation of sediment stratification and classification of alkali soils in Chitravati river basin, Andhra Pradesh. Agropedology, v.10, pp.195-204.

Birkeland, P.W., Shroba, R.R., Burns, S.F., Price, A.B. and Tonkin, P.J. (2003) Integrating soils and geomorphology in mountains-an example from the Front Range of Colorado. Geomorphology, v.55, pp.329–344.

Boettinger, J.L. and Southard, R.J. (1995) Phyllosilicate distribution and origin in Aridisols on a granitic pediment, Western Mojave Desert. Soil Sci. Soc. Amer. Jour., v.59, pp.1189-1198.

Borchardt, G. (1989) Smectites. In: Minerals in Soil Environments (J.B. Dixon & S.B. Weed, editors). Soil Sci. Soc. America, Madison, Wisconsin, pp. 675-727.

Brite, J. and Armin, S. (2007) Genesis, properties, classification and assessment of soils in Central Benin, West Africa. Geoderma, v.139, pp.357-370.

Cai, G., Guo, F., Liu, X., Sui, S., Li, C. and Zhao, L. (2008) Geochemistry of Neogene sedimentary rocks from the Jiyang basin, North China Block: The roles of grain size and clay minerals. Geochemical Jour., v.42, pp.381-402.

Castro, H.Y. and Gomez, M. (2013) Fertilidad de suelos y Fertilizantes. En el libro Ciencia del Suelo Principios básicos. Sociedad Colombiana de la Ciencia del Suelo, Bogotá, Colombia. 236p.

Chandra, R., Ahmad, I. and Qurashi, A.U. (2016) Pedological and Geochemical Characterization of Loess-Paleosol Sediments of Karewa Basin: Implications for Paleoclimatic Reconstruction of Kashmir Valley. Jour Geol.Soc. India, v.4, pp.38-54.

Choudhari, J.S. and Dhir, R.P. (1981) Clay mineralogy of medium-fine textured alluvial soils Western Rajasthan. Proc. Indian Nat. Sci. Acad. v.47-A (6), pp.695–704.

Daddow, R.L., and Warrington, G.E. (1983) Growth-limiting soil bulk densities as influenced by soil texture. USDA For. Serv. Watershed Syst. Dev. Group Rep. WSDG-TN-00005.

Dellavalle, N.B. (1992) Determination of soil-paste pH and conductivity of saturation extract. In Handbook on Reference Methods for Soil Analysis. Soil and Plant Analysis Council, Inc. Athens, GA, pp.40-43.

Emadi, M., Baghernejad, M. and Memarian, H. (2008) Genesis and clay mineralogical investigations in highly calcareous soils in semiarid regions of Southern Iran. Jour. Appld. Sci., v.8(2), pp.288-294.

Fanning, D.S., Keramidas, V.Z. and EL-Desoky, M.A. (1989) Micas. In: J.B. Dixon and S.B. Weed (Eds.), Minerals in Soil Environments. Soil Sci. Soc. Amer., Madison, Wisconsin, USA, pp.551-634.

Ghose, B., Singh, S. and Kar, A. (1977) Desertification around the Thar-A geomorphological interpretation. Annals of Arid Zone, v.16(3), pp.290-301.

Ghosh, S.K. and Dutta, N.P. (1974) X-ray investigation of clay minerals in the soils of West Bengal. Proc. Indian Natl. Sci. Acad., v.40, p.138.

Jackson, M.L. (1973) Soil Chemical Analysis. Prentice Hall of India Private Ltd. New- Delhi.

Jackson, M.L. (1979) Soil Chemical Analysis. An Advance Course. 2nd Edition. Univ. Wisconsin Madison, USA.

Jingqing, Shao, Shouye, Yang and Chao, Li. (2012) Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments. Sediment. Geol., v.265266, pp.110–120.

Kabata-Pendias, A. and Pendias, H. (1992) Trace Elements in Soils and Plants, 2nd Edition, CRC Press, Boca Ratón, Florida, 315.pp.

Kanhaiya, S., Singh, B.P. and Singh, S. (2018) Mineralogical and Geochemical Behavior of Sediments Solely Derived from Bundelkhand Granitic Complex, Central India: Implications to Provenance and Source Rock Weathering. Geochemistry Internat., v.56, (12), pp.1245–1262.

Kar, A. (1995) Geomorphology of arid western India, Mem. Geol. Soc. India, v.32, pp.168–190.

Kar, A., Singhvi, A. K., Juyal, N. and Rajaguru, S.N. (2004) Late Quaternary aeolian sedimentation history of Thar Desert. In Sharma, H. S. Singh, S. and De, S. (eds.), Geomorphology and Environment. ACB Publications, Kolkata. Pp.105–122.

Khormali, F. and Abtahi, A. (2003) Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Minerals, v.38, pp.511–527.

Khresat, S.A. and Qudah, E.A. (2006) Formation and properties of aridic soils of Azraq Basin in northeastern Jordan. Jour. Arid Environ., v.64 (1), pp.116-136.

Langley-Turnbaugh, S. J., Wilkinson, D. and Rocque, D. (2005) Portland underground: Exploring urban soils in Maine. Soil Survey Horizons, v.46, pp.1–13.

McFadden, L.D., Wells, S.G. and Dohrenwend, J.C. (1986) Influences of Quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California. Catena, v.13, pp.361– 389, DOI: 10.1016/0341-8162(86)90010-X.

McLennan, S. M. (2001) Relationships between the traces element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 2000GC000109.

Mehra, O.P. and Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. v.7, pp.317-327.

Meyer, W.L. and Arp, P.A. (1994) Exchangeable cations and cation exchange capacity of forest soil samples. Effects of drying, storage and horizon. Can. Jour. Soil Sci., v.74: pp.421-429.

Moharana, P.C. and Raja, P. (2016) Distribution, Forms and Spatial Variability of Desert Pavements in Arid Western Rajasthan. Jour. Geol. Soc. India, v.87, pp.401-410.

Moore, G. (2001) Soil Guide-A Handbook for understanding and Managing Agricultural Soils. Bulletin – 4343. Agriculture Western Australia pp. 243-250.

Muhs, D. R., Bettis, E. A., Been, J. and McGeehin, J.P. (2001) Impact of climate and parent material on chemical weathering in loess-derived soils of the Mississippi river valley. Soil Sci. Soc. Amer. Jour., v.65, pp.1761– 1777.

Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motion inferred from major element chemistry of Luttites. Nature, v.299, pp.715-717.

Nesbitt, H.W. and Young, G.M. (1989) Formation and diagenesis of weathering profiles. Jour. Geol., v.97 (2), pp.129–147.

Nwokocha, C.C., Akamigbo, F.O.R. and Chukwu, G.O. (2003) Characterization and evaluation of soils of Umuahia North local government area of Abia State, for agricultural production. In Ojeniyi et al., (Eds.), Land degradation, Agricultural Productivity and Rural Poverty: Environmental implications. Proceedings of the 28th Annual conference of the SSSN 4-7 November, 2003 Umudike-Nigeria, pp. 308-315.

Pal, D.K. and Deshpande, S.B. (1987) Parent material, mineralogy and genesis of two benchmark soils of Kashmir valley. Jour. Indian Soc. Soil Sci., v.35, pp.690-698.

Parker, A. (1970) An index of weathering for silicate rocks. Geological Magazine, v.107, pp.501-504.

Price, J.R. and Velbel, M.A. (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, v.202(3), pp.397-416.

Raad, A.T. and Portz, R. (1971) A new method for identification of sediment stratification in soils of Blue springs basin, Ontario. Geoderma, v.6, pp.23-41.

Raj Kumar, Sharma, B.D., Sidhu, P.S. and Brar, J.S. (2005) Characteristics, classification and management of Arid soils of Punjab. Jour. Indian Soc Soil Sci., v.53, pp.21-28.

Raja, P., Bhaskar, B.P., Surendran, U., Rajan, K., Sarkar, S.K., Malpe, D.B. and Nagaraju, M.S.S. (2018) Pedogenesis of spatially associated red and black soils in Purna valley from semi-arid region of Central India. Chemical Geol., v.483, pp.174-190; https://doi.org/10.1016/j.chemgeo.2018.02.018.

Rowell, D.L. (1994) Soil Science. Methods and Applications. Longman scientific & Technical, UK.

SCCS (2013) Estándares generales para interpretar análisis de suelos con fines agrí­colas. F. Silva M. Editor, Santafé de Bogota, D. E. 257 p.

Schoeneberger, P.J., Wysocki, D.A. and Benham, E.C. (2012) Soil Survey Staff, 2012. Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

Sharma, A., Sensarma, S., Kamlesh Kumar, Khanna, P.P. and Saini, N.K. (2013) Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: Implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate, Geochim. Cosmochim. Acta, v.104, pp.63-83. DOI: 10.1016/j.gca.2012.11.004.

Sharma, R.P., Rathore, M.S., Singh, R.S. and Qureshi, F.M. (2010) Mineralogical Framework of Alluvial Soils Developed on the Aravalli Sediments. Jour. Indian Soc. Soil Sci., v.58, pp.70-75.

Sharma, R.P., Singh, R.S. and Sharma, S.S. (2013) Vertical Distribution of Plant Nutrients in Alluvial Soils of Aravalli Range and Optimization of Land Use. International Jour. Pharmaceutical Chem. Sci., v.2 (3), pp.1377-1389.

Sidhu, G.S., Ghosh, S.K. and Manjaiah, K.M. (2000) Pedological variabilities and classification of some dominant soils of Aravallies Yamuna river transect in semi-arid tract of Haryana. Agropedology, v.10, pp.8087.

Singh, B. (2016) Variability and trend analysis of rainfall data of Jhalawar district of Rajasthan, India. Jour. Appld. Natural Sci., v.8 (1), pp.116 – 12.

Soil Survey Staff (2014) Keys to Soil Taxonomy. 12th Edition, USDA-Natural Resources Conservation Service, Washington DC.

Sombroek, W.G. and Zonneveld, I.S. (1971) Ancient dune fields and fluviatile deposits in the Rima-Sokoto River Basin (NW Nigeria). Soil Survey Paper no.5, Netherlands Soil Survey Institute, Wageningen. 109pp.

Suttner, L.J. and Dutta, P.K. (1986) Alluvial Sandstone Composition and Palaeoclimate Framework Mineralogy. Jour. Sediment. Petrol., v.56, pp.329-345.

Thornthwaite, C.W. (1948) An approach toward a rational classification of climate. Geographical Rev., v.38, pp.55–94.

Veihmeyer, F.J. and Hendrickson, A.H. (1948) Soil density and root penetration. Soil Sci., v.65 (6), pp.487-494.

Verma, M., Singh, B.P., Srivastava, A. and Mishra, M. (2012) Chemical behaviour of suspended sediments in a small river draining out of the Himalaya, Tawi River, northern India: implications on provenance and weathering, Himalayan Geol., v.33(1), pp.1–14.

Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, v.34, pp.735.

Yang, S.Y., Li, C.X., Yang, D.Y. and Li, X.S. (2004) Chemical weathering of the loess deposits in the lower Changjiang Valley, China, and paleoclimatic implications. Quaternary Internat., v.117, pp.27–34.