Nature of Biotites from the Granitoids of Guwahati and Mayong Areas of Shillong Plateau, Northeastern India and their Petrogenetic Significance

Authors

  • Department of Geological Sciences, Gauhati University, Guwahati - 781 014, Assam
  • Department of Geological Sciences, Gauhati University, Guwahati - 781 014, Assam
  • Department of Geological Sciences, Gauhati University, Guwahati - 781 014, Assam

DOI:

https://doi.org/10.1007/s12594-021-1737-8

Keywords:

No keywords.

Abstract

Intrusive granitoid bodies and quartzofeldspathic gneiss outcrops in the Guwahati and Mayong areas are considered part of the northern extension of the basement gneissic complex of the Shillong Plateau. They are medium to coarse-grained porphyritic granitoids essentially composed of quartz, K-feldspar, plagioclase, biotite, hornblende, sphene, magnetite, apatite, zircon, allanite, and bastnaesite in different proportions. Mineralogical characteristics of these granitoids reveal that they are monzogranite. The biotites are re-equilibrated in Guwahati granitoids whereas they are primary in Mayong granitoids. Ti-in biotite, Al-in hornblende and mineral assemblage biotite-K-feldspar-magnetite were used to determine temperature, pressure and oxygen fugacity during the crystallization of parent magmas. The Guwahati granitoids crystallized and re-equilibrated at temperatures ranging between 602ºC and 752ºC (avg. 685ºC) with pressure (5.2 - 5.6 kbar, avg 5.4 kbar) from low oxidized magmas (log fO2 -16.33 to -14.36 bar), buffered below FMQ to within NNO. The Mayong granitoids crystallized at temperatures range 694ºC to 715ºC (avg. 705 ºC) with pressure (4.7 to 5.1 kbar, avg. 5 kbar) under reduced oxidized condition (log fO2 -17.88 to -17.62 bar) buffered below FMQ. The calc-alkaline nature, low to moderate oxygen fugacity and high H2O (4.5–7.4 wt%) content suggests that Guwahati granitoids emplaced in subduction-related tectonic setting whereas alkaline nature, reduced oxygen fugacity and low content of H2O (2.15 wt%) suggest anorogenic tectonic setting for Mayong granitoids. Also, from the estimated pressure and depth of emplacement conditions it suggests that both the granitoids are mid-level plutons.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2021-06-14

How to Cite

Doley, D., Sarma, G., & Bhagabaty, B. (2021). Nature of Biotites from the Granitoids of Guwahati and Mayong Areas of Shillong Plateau, Northeastern India and their Petrogenetic Significance. Journal of Geological Society of India, 97(6), 625–634. https://doi.org/10.1007/s12594-021-1737-8

References

Abdel-Rahman, A.M. (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Jour. Petrol., v.35, pp.525-541.

Ague, J.J. and Brimhall, G.H. (1988) Regional variations in bulk chemistry, mineralogy and the compositions of mafic and accessory minerals in the batholiths of California. Geol. Soc. Amer. Bull., v.100, pp.891-911.

Anderson, J.L. and Smith, D.R. (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Amer. Mineral., v.80(5–6), pp.549–559.

Anettsungla, Rino. V. and Kumar, S. (2018) Redox condition, nature and tectono-magmatic environment of granitoids and granite gneisses from the Karbi Anglong Hills, Northeast India: Constraints from magnetic susceptibility and biotite geochemistry. Jour. Geol. Soc. India, v.91(5), pp.601-612.

Aydin, F., Karsli, O. and Sadiklar, M.B. (2003) Mineralogy and chemistry of biotites from Eastern Pontide granitoid rocks, NE-Turkey: Some petrological implications for granitoid magmas. Chem. Erde., v.63, pp.163- 182.

Bando, M., Bignall, G., Sekine, K. and Tsuchiya, N. (2003) Petrography and uplift history of the Quaternary Takidani granodiorite: Could it have hosted a supercritical (HDR) geothermal reservoir? Jour. Volcanol. Geotherm. Res., v.120(3), pp.215–234.

Barriere, M. and Cotten, J. (1979) Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contrib. Mineral. Petrol., v.70, pp.183-192.

Batchelor, R.A. (2003) Geochemistry of biotite in metabentonites as an age discriminant, indicator of regional magma sources and potential correlating tool. Mineral. Magz., v.67, pp.807-817.

Bhagabaty, B., Mazumdar, M.K., Mazumdar, A.C. and Borah, P. (2017) Geochemical characteristics of Tukureswari and Barbhita Granitoid in Goalpara District, Assam. Jour. Geol. Soc. India, v.89, pp.532-540.

Beane, R.E. (1974) Biotites stability in the porphyry copper environment. Econ. Geol., v.69, pp.241-256.

Bidyananda, M. and Deomurari, M.P. (2007) Geochronological constraints on the evolution of Meghalaya Massif, northeastern India: An ion microprobe study. Curr. Sci., v.93, No.11, pp.1620-1623.

Bora, S. and Kumar, S. (2015) Geochemistry of biotites and host granitoid plutons from the Proterozoic Mahakoshal Belt, central India tectonic zone: implication for nature and tectonic setting of magmatism. Internatl. Geol. Rev., v.57(11-12), pp.1686-1706.

Borodina, N.S., Fershtater, G.E. and Voltyakov, S.L. (1999) The oxidation ratio of iron in coexisting biotite and hornblende from granitic and metamorphic rocks: the role of P, T and f (O2). Can. Mineral., v.37, pp.1423-1429.

Burkhard, D.J.M. (1993) Biotite crystallization temperatures and redox states in granitic rocks as indicator for tectonic setting. Geol. En Mijnb., v.71, pp.337-349.

Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacific. Geol., v.8, pp.173-174.

Chatterjee, N., Bhattacharya, A., Duarah, B.P. and Mazumdar, A.C. (2011) Late Cambrian reworking of Palaeo-Mesoproterozoic granulites in Shillong–Meghalaya Gneissic Complex (Northeast India): evidence from PT pseudosection analysis and monazite chronology and implications for East Gondwana assembly. Jour. Geol., v.119, pp.311–330.

Chatterjee, N., Mazumdar, A.C., Bhattacharya, A. and Saikia, R.R. (2007) Mesoproterozoic granulites of the Shillong–Meghalaya Plateau: evidence of westward continuation of the Prydz Bay Pan-African suture into Northeastern India. Precambrian Res., v.152, pp.1–26.

Choudhury, D.K., Pradhan, A.K., Zakaulla, S. and Umamaheshwar, K. (2012) Geochemistry and petrogenesis of anorogenic (?) granitoids of west Garo Hills, Meghalaya. Jour. Geol. Soc. India, v.80, pp.276-286.

Deer, W.A., Howie, R.A. and Zussman, J. (1992) An introduction to the rockforming minerals. Longman, London, 696p.

Dodge, F.C.W., Smith, V.C. and Mays, R.E. (1969) Biotites from granitic rocks of the central Sierra Nevada batholith, California. Jour. Petrol., v.10, pp.250-271.

Duarah, B.P. and Phukan, S. (2011) Understanding the tectonic behaviour of the Shillong Plateau, India using remote sensing data. Jour. Geol. Soc. India, v.77(2), pp.105-112.

Dwivedi, S.B., Theunuo, K. and Kumar, R. R. (2020) Characterization and metamorphic evolution of Mesoproterozoic granulites from Sonapahar (Meghalaya), NE India, using EPMA monazite dating. Geol. Magz., pp.1- 19.

Dymek, R.F. (1983) Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Amer. Mineral., v.68, pp.880-889.

Finch, A.A., Parsons, I. and Mingard, S.C. (1995) Biotites as indicators of fluorine fugacities in late-stage magmatic fluids: the Gardar province of south Greenland. Jour. Petrol., v.36, pp.1701-1728.

Foster, M.D. (1960) Interpretation of the composition of tri-octahedral mica. USGS Prof. Paper 354-B, pp.11–49.

Frost, B.R., Barnes, C.G., Collins, WJ. Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A geochemical classification for granitic rocks. Jour. Petrol., v.42, pp.2033–2048.

Ghosh, S., Bhalla, J.K., Paul, D.K., Sarkar, A., Bishui, P.K. and Gupta, S.N. (1991) Geochronology and geochemistry of granite plutons from East Khasi Hills, Meghalaya. Jour. Geol. Soc. India, v.37, pp.331-342.

Ghosh, S., Fallick, A.E., Paul, D.K. and Potts, P.J. (2005) Geochemistry and origin of Neoproterozoic granitoids of Meghalaya, Northeast India: implications for linkage with amalgamation of Gondwana Supercontinent. Gondwana Res., v.8, pp.421-432.

Goswami, B., Roy, P., Basak, A., Das, S. and Bhattacharyya, C. (2018) Physicochemical conditions of four calc-alkaline granitoid plutons of Chhotanagpur Gneissic Complex, eastern India: Tectonic implications. Jour. Earth. System. Sci., v.127(8): 120. doi: 10.1007/s12040-018-1022- 4.

G.S.I. (1998) Geological and Mineral Map of North-East India, Published by Geological Survey of India. Hammarstrom, J.M. and Zen, E.A. (1986) Aluminum in hornblende: An empirical igneous geobarometer; Amer. Mineral., v.71(11–12), pp.1297– 1313.

Hazarika. P, Mishra, B. and Pruseth, K.L. (2015) Diverse tourmaline compositions from orogenic gold deposits in the Hutti–Maski greenstone belt, India: Implications for sources of ore-forming fluids. Econ. Geol., v.110, pp.337–353.

Heinrich, E. W. (1946) Studies in the mica group. Science, v.244, pp.836- 848.

Henry, D.J., Guidotti, C.V. and Thomson, J.A. (2005) The Ti–saturation surface for low–to–medium pressure metapelitic biotites: Implications for geothermometry and Ti–substitution mechanisms. Amer. Mineral., v.90(2– 3), pp.316–328.

Holloway, J. R. and Blank, J.G. (1994) Application of experimental results to C O H species in natural melts. Reviews in Mineralogy and Geochemistry, v.30(1), pp.187–230.

Ishihara, S. (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol. (Tokyo), v.27, pp.293-305.

Ishihara, S. (1981) The granitoid series and mineralization. Econ. Geol., v.75, pp.458-484.

Johnson, M.C. and Rutherford, M.J. (1989) Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geol., v.17, pp.837–841.

Kumar, S. (2008) Magnetic susceptibility mapping of Ladakh granitoids, northwest Higher Himalaya: Implication to redox series of felsic magmatism in the subduction environments. Mem. Geol. Soc. India, no.72, pp.83-102.

Kumar, S. and Pathak, M. (2010) Mineralogy and geochemistry of biotites from Proterozoic granitoids of western Arunachal Himalaya: Evidence of bimodal granitogeny and tectonic affinity. Jour. Geol. Soc. India, v.75, pp.715-730. doi:10.1007/s12594-010-0058-0.

Kumar, S. and Pieru, T. (2010) Petrography and major elements geochemistry of microgranular enclaves and neoproterozoic granitoids of south Khasi, Meghalaya: Evidence of magma mixing and alkali diffusion. Jour. Geol. Soc. India, v.76, pp.345–360. doi:10.1007/s12594-010-0106-9.

Kumar, S. and Singh, Kh. M. (2008) Granite series evaluation of Early Ordovician Kyrdem granitoids and enclaves, Meghalaya Plateau, Northeast India: Implication on oxidation condition of interacting mafic-felsic magma system. Earth Sci. India, v.1, pp.204-219.

Kumar, S., Pieru, T. and Rino, V. (2005) Evaluation of granitoid-series and magmatic oxidation of Neoproterozoic South Khasi Granitoids and their microgranular enclaves, Meghalaya: constraints from magnetic susceptibility and biotite composition. Jour. Appld. Geochem., v.7, pp.175- 194.

Kumar, S., Rino, V., Hayasaka, Y., Kimura, K., Raju, S., Terada, K. and Pathak, M. (2017a) Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry. Lithos, v.277, pp.356-375.

Kumar, S., Singh, B., Joshi, C.C. and Pandey, A. (2006) Magnetic susceptibility and biotite composition of granitoids of Amritpur region, Kumaun Lesser Himalaya: implication on granite series evaluation and nature of felsic magma. Jour. Geol. Soc. India, v.68, pp.666-674.

Kumar. S. (1998) Granitoids and their enclaves from east Khasi Hills of Meghalaya: Petrogenetic and Geochemical reappraisal. Workshop on Geodynamics and natural Resources of Northeast India, Dibrugarh, Assam. Abstract volume, pp.17-18.

Kumar. S., Pieru. T., Rino. V. and Hayasaka. V (2017b) Geochemistry and U– Pb SHRIMP zircon geochronology of microgranular enclaves and host granitoids from the South Khasi Hills of the Meghalaya Plateau, NE India: evidence of synchronous mafic–felsic magma mixing–fractionation and diffusion in a post-collision tectonic environment during the Pan-African orogenic cycle. Geol. Soc., London, Spl Publ, v.457, doi:10.1144/ SP457.10.

Lalonde, A.E. and Bernard, P. (1993) Composition and color of Biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay orogen, Northwest Territories. Can. Mineral., v.31, pp.203-217.

Le Maitre, R.W. (2002) A classification and glossary of terms. Recommendations of IUGS Subcommision on the Systematics of Igneous rocks. 2nd Ed., Cambridge Univ. Press, Cambridge, pp.236.

Li, W., Cheng, Y. and Yang, Z. (2019a) Geo fO2: Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geo fO2: Integrated software for analysis of magmatic oxygen fugacity. Geochemistry, Geophysics, Geosystems, v.20. doi:10.1029/2019GC008273.

Li, W., Yang, Z., Cao, K., Lu, Y.J. and Sun, M.Y. (2019b) Redox controlled generation of the giant porphyry Cu–Au deposit at Pulang, southwest China. Contrib. Mineral. Petrol., v.174(2), 12p.

Machev, P., Klain, L. and Hecht, L. (2004) Mineralogy and geochemistry of biotites from the Belogradchik pluton – some petrological implications for granitoid magmatism in north-west Bulgaria. Bulgarian Geol. Soc., Ann. Sci. Conf. “Geology 2004”, 16.–17.12.2004., pp.48–50.

Mahadevan, T.M. (2008) Precambrian geological and structural features of the Indian Peninsula. Jour. Geol. Soc. India, v.72(1),pp.35-55.

Majumdar, D. and Dutta, P. (2016) Geodynamic evolution of a Pan-African granitoid of extended Dizo Valley in Karbi Hills, NE India: Evidence from Geochemistry and Isotope Geology. Jour. Asian Earth Sci., v.117, pp.256-268.

Mazumdar, S.K. (1976) A summary of the Precambrian geology of the Khasi Hills, Meghalaya. Geol. Surv. India Misc. Publ., no.23(2), pp.311– 334.

Mazumdar, S.K. (1986) The Precambrian framework of part of the Khasi Hills, Meghalaya. Rec. Geol. Surv. India, v.117, pp.1 -59.

Monier, G. and Robert, J.L. (1986) Muscovite solid solutions in the system K2O-MgO-FeO-Al2O3-SiO2-H2O: an experimental study at 2 kbar PH2O and comparison with natural Li free white micas. Mineral. Magz., v.50, pp.257–266.

Moore G., Vennemann, T. and Carmichael, I. S. E. (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Amer. Mineral., v.83(1– 2),pp. 36–42.

Munoz, J.L. (1992) Calculation of HF and HCl fugacities from biotite compositions: revised equations. Geol. Soc. Amer., Abstr. Programs 24:A221.

Nachit, H., Ibhi, A., Abia, E.H. and Ohoud, M.B. (2005) Discrimination between primary magmatic biotites, re-equilibrated biotites and neoformed biotites. C R Geosci. v.337, pp.1415–1420.

Nandy, D.R. (2001) Geodynamics of northeastern India and the adjoining region. ABC Publications, Kolkata, 209p.

Neiva, A.M.R. (1981) Geochemistry of hybrid granitoid rocks and of their biotites from central northern Portugal and their petrogenesis. Lithos, v.14, pp.149-163.

Patiño-Douce, A.E. (1993) Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability. Chem. Geol., v.108, pp.133–162.

Pouchou, J.L. and Pichoir, F. (1984) A new model for quantitative X-ray microanalyses, Part I: Application to the analyses of homogenous samples. La Recherche Aerosp,v.3, pp.13–38.

Ray, J., Saha, A., Ganguly, S., Balaram, V., Krishna, A.K. and Hazra, S. (2011) Geochemistry and petrogenesis of Neoproterozoic Mylliem granitoids, Meghalaya Plateau, northeastern India. Jour. Earth System Sci., v.120(3), pp.459.

Ray, J., Saha, A., Koeberl, C., Thoni, M., Ganguly, S. and Hazra, S. (2013) Geochemistry and petrogenesis of Proterozoic mafic rocks from east Khasi Hills, Shillong Plateau, northeastern India. Precambrian Res., v.230, pp.119-137.

Robert, J.R. (1976) Titanium solubility in synthetic phlogopite solid solutions. Chem. Geol., v.17, pp.213–227.

Rutherford, M.J. (1973) The phase relations of aluminous iron biotites in the system KAlSi3O8-KAlSiO4-Al2O3-Fe-O-H. Jour. Petrol., v.14, pp.159–180. Sarma, K.P. and Dey, T., (1996) Re-look on Shillong Plateau. Bull. Pure Appl. Sci., v.15, pp.51-54.

Schmidt, M.W. (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al–in–hornblende barometer. Contrib. Mineral. Petrol., v.110, pp.304–310. doi:10.1007/BF00310745.

Sengupta, P.R. and Agarwal, N.K. (1998) The tectonic segments of Northeastern India and associated gold mineralization. Jour. Geol. Soc. India, v.52(5), pp.549-556.

Shabani, A.T., Lalonde, A.E. and Whalen J.B. (2003) Composition of biotite from granite rocks of the Canadian Appalachian orogen: a potential tectonomagmatic indicator. Can. Mineral., v.4, pp.1381–1396.

Singh, B. and Kumar, S. (2004) Geochemistry of biotite, muscovite and tourmaline from Early Palaeozoic granitoids of Kinnaur district, Higher Himachal Himalaya. Extended abstracts: 19th Himalaya- Karakoram-Tibet workshop, Niseko, Japan. Himalayan Jour. Sci., v.2, pp.248-249.

Speer, J.A. (1984) Mica in igneous rocks. In: Bailey SW (ed) Micas. Rev. Mineral. Soc. Amer., v.13, pp.299–356.

Speer, J.A. (1981) Petrology of cordierite- and almandine bearing granitoid plutons of the southern Appalachian Piedmont, U.S.A. Can. Mineral., v.19, pp.35-46.

Streckeisen, A. (1973) Classification and Nomenclature of Plutonic Rocks. Recommendations by the IUGS Subcomission on the Systematics of Igneous Rocks. N. Jahrburch für Mineralogie, Monatshefre, pp.149-164.

Stone, D. (2000) Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, northwest Superior Province, Ontario, Canada. Can. Mineral., v.38, pp.455-470.

Stussi, J.M. and Cuney, M. (1996) Nature of biotites from alkaline, calc-alkaline and peraluminous magmas by Abdel-Fattah M Abdel-Rahman: a comment. Jour. Petrol., v.37, pp.1025–1029.

Uchida, E., Endo, S. and Makino, M. (2007) Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, v.57(1), pp.47–56.

Walia, D., Lyngdoh, A.C. and Saxena, A. (2010) Seismotectonic zones demarcation in the Shillong Plateau using the microearthquakes and radon emanation rate. Acta Geophysica, v.58(5), pp.893-907.

Wones, D. R. (1972) Stability of biotite: A reply. Amer. Mineral., v.57, pp.316- 317.

Wones, D.R. and Eugster, H.P. (1965) Stability of biotite: experiment, theory and application. Amer. Mineral., v.50, pp.1228–1272.

Wones, D.R. (1981) Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geol., v.3, pp.191–212.

Yavuz, F. and Öztas, T. (1997) BIOTERM- a program for evaluating and plotting microprobe analyses of biotite from barren and mineralized magmatic suites: Comput. Geosci., v.23, pp.897-907. doi:10.1016/S0098- 3004(97)00071-X.

Yin, A., Dubey, C.S., Webb, A.A.G., Kelty, T.K., Grove, M., Gehrels, G.E. and Burgess, W.P. (2010) Geologic correlation of the Himalayan orogen and Indian Craton: part I. Structural geology, U–Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighbouring regions in Northeast India. Geol. Soc. Amer. Bull., v.122, pp.336– 359.

Zhu, C. and Sverjensk, D.A. (1992) Partitioning of F-Cl-OH between biotite and apatite. Geochim. Cosmochim. Acta., v.56, pp.3435–3467.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.