Last 10000 Years Variation in the Intensity of OMZ-Core Reconstructed from Sediment of the Eastern Arabian Sea

Authors

  • CSIR-National Institute of Oceanography, Dona Paula - 403 004
  • CSIR-National Institute of Oceanography, Dona Paula - 403 004
  • Zeib Castle, La Oceana, behind International Centre, Dona Paula - 403 004

DOI:

https://doi.org/10.1007/s12594-021-1673-7

Keywords:

No Keywords.

Abstract

The Arabian Sea Oxygen Minimum Zone (OMZ) is one of the most intense of the world ocean OMZs witnessing denitrification, hence, has implications to global climate. In order to understand the Holocene variations in the OMZ of this region, a sediment core (BP3-GCR3) from a water depth of 500 m was retrieved, which is presently swept by nearly anoxic waters of the core of the OMZ. The sedimentary oxide-bound Mn, a reliable redox proxy, exhibits a gradual decrease from ~14 ppm during the early-Holocene to ~8 ppm during the late-Holocene, suggesting a relatively less intense OMZ during the former period. The concentration of a suite of other redox-sensitive elements (Fe, Co and Ce) associated with the dispersed sedimentary oxide particulates also show a gradual and coherent decrease through the Holocene suggesting reduction of dissolved oxygen (DO) in the core of the OMZ towards the modern times. This intensification of OMZ seems to be a result of increased export production coupled with decreasing ventilation of thermocline waters through the Holocene. A one-time positive shift is observed at ~5.5 ka BP in the organic carbon content (OC) from ~2 % to ~10 % in core-top. This shift in OC content is also marked by rapid decrease of CaCO3, by ~20 %, suggesting enhanced carbonate dissolution due to increased anoxia in the OMZ core caused by increased export production in the late Holocene.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2021-03-31

How to Cite

Joshi, G. P., Naik, S. S., & Banakar, V. K. (2021). Last 10000 Years Variation in the Intensity of OMZ-Core Reconstructed from Sediment of the Eastern Arabian Sea. Journal of Geological Society of India, 97(3), 243–248. https://doi.org/10.1007/s12594-021-1673-7

References

Agnihotri, R., Dutta, K., Bhushan, R., Somayajulu, B.L.K. (2002) Evidence for solar forcing on the Indian monsoon during the last millennium. Earth Planet. Sci. Lett., v.198, pp.521–527. DOI:10.1016/S0012-821X(02)00530-7

Agnihotri, R., Bhattacharya, S.K., Sarin, M.M., Somayajulu, B.L.K. (2003) Changes in surface productivity and subsurface denitrification during the Holocene: A multiproxy study from the eastern Arabian Sea. Holocene., v.13, pp.701–713. DOI:10.1191/0959683603hl656rp

Altabet, M.A., Francois, R., Murray, D.W., Prell, W.L. (1995) Climate-related variations in denitrification in the Arabian Sea from sediment15N/14N ratios. Nature., v.373, pp.506–509. DOI:10.1038/373506a0

Banakar, V.K., Oba, T., Chodankar, A. R., Kuramoto, T., Yamamoto, M., Minagawa, M. (2005) Monsoon related changes in sea surface productivity and water column denitrification in the Eastern Arabian Sea during the last glacial cycle. Mar. Geol., v.219, pp.99–108. DOI:10.1016/j.margeo. 2005.05.004

Banakar, V. K., Hein, J. R., Rajani, R. P., Chodankar, A. R. (2007) Platinum group elements and gold in ferromanganese crusts from Afanasiy-Nikitin seamount, equatorial Indian Ocean: Sources and fractionation. Jour. Earth Syst. Sci., v.116, pp.3–13. doi:10.1007/s12040-007-0002-x

Banakar, V.K. (2010) Deep-sea ferromanganese deposits and their resource potential for India. Jour. Indian Inst. Sci., v.90,:535–541.

Banse, K. (1968) Hydrography of the Arabian Sea Shelf of India and Pakistan and effects on demersal fishes. Deep Res. Oceanogr. Abstr., v.15, pp.45–79. DOI:10.1016/0011-7471(68)90028-4

Bayon, G., German, C.R., Boella, R.M., Milton, J.A., Taylor, R.N., Nesbitt, R.W. (2002) An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chemical Geology., v.187, pp.179–199. DOI:10.1016/S0009-2541(01)00416-8

Bhattathiri, P.M.A., Pant, A., Sawant, S., Gauns, M., Matondkar, S.G.P., and Mohanraju, R. (1996) Phytoplankton production and chlorophyll distribution in the eastern and central Arabian Sea in 1994-1995. Curr. Sci., v.79, pp.857–862.

Bhushan, R., Dutta, K., Somayajulu, B.L.K. (2001) Concentrations and burial fluxes of organic and inorganic carbon on the eastern margins of the Arabian Sea. Mar. Geol., v.178, pp.95–113. DOI:10.1016/S0025-3227(01)00179-7

Cabarcos. E., Flores, J.A., Singh, A.D., Sierro, F.J. (2014) Monsoonal dynamics and evolution of the primary productivity in the eastern Arabian Sea over the past 30 ka. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.411, pp.249–256. DOI:10.1016/j.palaeo.2014.07.006

Calvert, S.E., Pedersen, T.F. (1996) Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales. Econ. Geol., v.91, pp.36–47. DOI:10.2113/gsecongeo.91.1.36

Das, M., Singh, R.K., Gupta, A.K., Bhaumik, A.K., (2017) Holocene strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity? Palaeogeogr. Palaeoclimatol. Palaeoecol., v.483, pp.125–135. DOI:10.1016/j.palaeo.2016.10.035

Dickens, G.R., Owen, R.M., (1994) Late Miocene-Early Pliocene manganese redirection in the central Indian Ocean: Expansion of the Intermediate Water oxygen minimum zone. Paleoceanography., v.9, pp.169–181. DOI:10.1029/93PA02699

Frank, M., O’Nions, R.K., Hein, J.R., Banakar, V.K., (1999) 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochim. Cosmochim. Acta., v.63, pp.1689–1708. DOI:10.1016/S0016-7037(99)00079-4

Gaye, B., Böll, A., Segschneider, J., Burdanowitz, N., Emeis, K.C., Rama-swamy, V., Lahajnar, N., Lückge, A., Rixen, T. (2018) Glacial-interglacial changes and Holocene variations in Arabian Sea denitrification. Biogeo-sciences., v.15, pp.507–527. DOI:10.5194/bg-15-507-2018

GEBCO compilation group. (2020) GEBCO Gridded Bathymetry Data. In: 2020. https://www.gebco.net/data_and_products/gridded_bathymetry_data/. Accessed 5 Jun 2020

German, C.R., Elderfield, H. (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography, v.5, pp.823–833. DOI:10.1029/PA005i005p00823

Glasby, G.P., Mountain, B., Vineesh, T.C., Banakar, V.K., Rajani, R., Ren, X. (2010) Role of hydrology in the formation of Co-rich Mn crusts from the equatorial N pacific, equatorial S Indian ocean and the NE Atlantic ocean. Resour. Geol., v.60, pp.165–177. DOI:10.1111/j.1751-3928.2010.00123.x

Godad, S.P., Naik, S.S., Naidu, P.D., (2017) 70 kyr record of denitrification and oxygenation changes in the eastern Arabian Sea. Geochem. Jour., v.51, pp.329–336. DOI:10.2343/geochemj.2.0472

Grill, E. V., (1982) Kinetic and thermodynamic factors controlling manganese concentrations in oceanic waters. Geochim. Cosmochim. Acta., v.46, pp.2435–2446. DOI:10.1016/0016-7037(82)90366-0

Gupta, A.K., Singh, R.K., Joseph, S., Thomas, E. (2004) Indian Ocean high-productivity event (10–8Ma): linked to global cooling or to the initiation of the Indian monsoons. Geology., v.32, pp.753–756 DOI:10.1130/G20662.1

Joseph, S., Freeland, H.J. (2005) Salinity variability in the Arabian Sea. Geophys. Res. Lett., v.32, pp.1–4. DOI:10.1029/2005GL022972

Kessarkar, P.M., Naqvi, S.W.A., Thamban, M., Fernandes, L.L., Siebert, C., Rao, V.P., Kawahata, H., Ittekkot, V., Frank, M. (2018) Variations in Denitrification and Ventilation Within the Arabian Sea Oxygen Minimum Zone During the Holocene. Geochem. Geophys. Geosys. v.19, pp.2179–2193. DOI:10.1029/2017GC007286

Lachkar, Z., Smith, S., Lévy M., Pauluis, O. (2016) Eddies reduce denitrification and compress habitats in the Arabian Sea. Geophys. Res. Lett., v.43, pp.9148–9156. DOI:10.1002/2016GL069876

Lawler, A. (2008) Boring No More,a trade-savvy Indus Emerges. Science, v.320 (5881), pp.1267–1281. DOI: 10.1126/science.320.5881.1276

Lewis, B.L., Luther, G.W. (2000) Processes controlling the distribution and cycling of manganese in the oxygen minimum zone of the Arabian Sea. Deep. Res. Part II, Top. Stud. Oceanogr., v.47, pp.1541–1561. DOI:10. 1016/S0967-0645(99)00153-8

Madhupratap, M., Kumar, S.P., Bhattathiri, P. M. A., Kumar, M.D., Raghukumar, S., Nair, K.K.C., Ramaiah, N. (1996) Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature., v.384(6609), pp.549–52. DOI:10.1038/384549a0

Martin, J,H., Knauer, G.A. (1984) VERTEX: Manganese transport through oxygen minima. Earth Planet. Sci. Lett., v.67, pp.35–47. DOI:10.1016/0012-821X(84)90036-0

McCreary, J.P., Yu, Z., Hood, R.R., Vinaychandran, P.N., Furue, R., Ishida, A., Richards, K.J. (2013) Dynamics of the Indian-Ocean oxygen minimum zones. Prog. Oceanogr., v.112–113, pp.15–37. DOI:10.1016/j.pocean.2013.03.002

Morrison, J.M., Codispoti, L.A., Smith, S.L., Wishner, K., Flagg, C., Gardner, W.D., Gaurin, S., Naqvi, S.W.A., Manghnani, V., Prosperie, L., Gundersen, S.J. (1999) The oxygen minimum zone in the Arabian Sea during 1995. Deep. Res. Part II, Top. Stud. Oceanogr., v.46, pp.1903–1931. DOI:10. 1016/S0967-0645(99)00048-X

Nagoji, S.S., Tiwari, M. (2017) Organic carbon preservation in Southeastern Arabian Seasediments since mid-Holocene: Implications to South AsianSummer Monsoon variability. Geochem. Geophys. Geosys., v.116, pp.1–12. DOI:10.2113/2.4.476

Naidu, P.D., Singh, A.D., Ganeshram, R., Bharti, S.K. (2014) Abrupt climate-induced changes in carbonate burial in the Arabian Sea: Causes and consequences Geochem. Geophys. Geosyst. v.15(1) pp.1398–1406. DOI:10.1002/2013GC005065

Naik, S.S., Godad, S.P., Naidu, P.D., Tiwari, M., Paropkari, A. L. (2014) Early-to late-Holocene contrast in productivity, OMZ intensity and calcite dissolution in the eastern Arabian Sea. Holocene., v.24(6), pp.749–755. DOI:10.1177/0959683614526936

Naik, S.S., Naidu, P.D., Foster, G.L., Martínez-Botí, M.A. (2015) Tracing the strength of the southwest monsoon using boron isotopes in the eastern Arabian Sea Geophy. Res. Lett. v.42, pp.1450-1458. DOI:10.1002/2015GL063089.

Naqvi, S.W.A. (1991) Geographical extent of denitrification in the Arabian Sea in relation to some physical processes. Oceanologica. Acta., v.14, pp.281–290.

Narayana, A.C., Naidu, P.D., Shinu, N., Nagabhushanam, P., Sukjija, B.S. (2009), Carbonate and organic carbon content changes over last 20 ka in the Southeastern Arabian Sea: Paleoceanographic implications, Quat. Int., v.206, pp.72–77, DOI:10.1016/j.quaint.2008.10.010

Olson, D.B., Hitchcock, G.L., Fine, R.A., Warren, B.A. (1993) Maintenance of the low-oxygen layer in the central Arabian Sea. Deep. Res. Part II., v.40, pp.673–685. DOI:10.1016/0967-0645(93)90051-N

Pattan, J.N., Pearce, N.J.G., Mislankar, P.G. (2005) Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the Central Indian Ocean Basin. Chem. Geol., v.221, pp.260–278. DOI:10.1016/j.chemgeo.2005.06.009

Pattan, J.N., Parthiban, G., Garg, A., Moraes, N.R.C. (2017) Intense reducing conditions during the last deglaciation and Heinrich events (H1, H2, H3) in sediments from the oxygen minimum zone off Goa, eastern Arabian Sea. Mar. Pet. Geol., v.84, pp.243–256. DOI:10.1016/j.marpetgeo.2017.03.034

Pichevin, L., Bard, E., Martinez, P., Billy, I. (2007) Evidence of ventilation changes in the Arabian Sea during the late Quaternary: Implication for denitrification and nitrous oxide emission. Global Biogeochem. Cycles., v.21, pp.1–12. DOI:10.1029/2006GB002852

Prasad, V., Farooqui, A., Sharma, A., Phartiyal, B., Chakraborty, S., Bhandari, S., Raj. R., Singh, A. (2014) Mid-late Holocene monsoonal variations from mainland Gujarat, India: A multi-proxy study for evaluating climate culture relationship. Palaeogeogr. Palaeoclimatol. Palaeoecol. v.397, pp.38–51. DOI:10.1016/j.palaeo.2013.05.025

Kumar, S.P., Madhupratap, M., Kumar, M.D., Muraleedharan, P.M. De Souza, S.N., Gauns, M., Sarma, V.V.S.S. (2000) Physical control of primary productivity on a seasonal scale in central and eastern Arabian Sea. Proc. Indian. Acad. Sci. (Earth Planet. Sci.) v.109, pp.433–441. DOI: 10.1007/bf02708331

Qasim, S. (1977) Biological productivity of the Indian Ocean. Indian. J. Geo-Marine. Sci., v.06, pp.122–137.

Raikes, R.L. (1964) The End of the Ancient Cities of the Indus Robert. Am. Anthropol. Assoc., v.66, pp.284–299. DOI:10.1017/CBO9781107415324.004

Raj, R., Chamyal, L.S., Prasad, V., Sharma, A., Tripathi, J.K., Verma, P. (2015) Holocene climatic fluctuations in the Gujarat Alluvial Plains based on a multiproxy study of the Pariyaj Lake archive, western India. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.421, pp.60–74. DOI:10.1016/j.palaeo.2015.01.004

Rajani, R.P., Banakar, V.K., Parthiban, G., Mudholkar, A.V., Chodankar, A.R. (2005) Compositional variation and genesis of ferromanganese crusts of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean. Jour. Earth Syst.Sci., v.114, pp.51–61. DOI:10.1007/BF02702008

Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V.V.S.S., Kumar, M.D.(2012) Controlling factors of the oxygen balance in the Arabian Sea’s OMZ. Biogeosciences., v.9, pp.5095–5109. DOI:10.5194/bg-9-5095-2012

Rutberg, R.L., Hemming, S.R., Goldstein, S.L. (2000) Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature., v.405, pp.935–938. DOI:10.1038/35016049

Saager, P.M. (1994) The biogeochemical distribution of trace elements in the Indian Ocean. Proc. Indian. Acad. Sci.(Earth Planet. Sci) v.103, pp.237–278. DOI:10.1007/BF02839538

Saager, P.M., De Baar H.J.W., Burkill, P.H. (1989) Manganese and iron in Indian Ocean waters. Geochim. Cosmochim. Acta. v.53, pp.2259–2267. DOI:10.1016/0016-7037(89)90348-7

Schenau, S.J., Reichart, G. J., De Lange, G.J. (2002) Oxygen minimum zone controlled Mn redistribution in Arabian Sea sediments during the late Quaternary. Paleoceanog., Paleoclimat., v.17, pp.3–4. DOI:10.1029/2000PA000621.

Singh, A.D., Kroon, D., Ganeshram, R.S. (2006) Millennial scale variations in productivity and OMZ intensity in the eastern Arabian Sea. Jour. Geol Soc. India., v.68, pp.369–377.

Singh, A.D. (2007) Episodic preservation of pteropods in the eastern Arabian Sea: Monsoonal change, oxygen minimum zone intensity and aragonite compensation depth. Indian Jour. Mar. Sci., v.36, pp.378–383

Singh, A.D., Jung, S.J.A., Darling, K., Ganeshram, R. S., Ivanochko, T., Kroon, D. (2011) Productivity collapses in the Arabian Sea during glacial cold phases. Paleoceanography., v.26, pp.1–10. DOI:10.1029/2009PA001923

Singh, A.D., Rai, A.K., Verma, K., Das, S., Bharti, S.K. (2015) Benthic foraminiferal diversity response to the climate induced changes in the eastern Arabian Sea oxygen minimum zone during the last 30 ka BP. Quat. Internat., v.374, pp.118–125. DOI:10.1016/j.quaint.2014.11.052

Singh, A.D., Jung, S.J.A., Anand, P., Kroon, D., Ganeshram, R.S. (2018) Rapid switch in monsoon-wind induced surface hydrographic conditions of the eastern Arabian Sea during the last deglaciation. Quat. Int. v.479, pp.3–11. DOI:10.1016/j.quaint.2018.03.027

Somayajulu, B.L.K., Yadav, D.N., Sarin, M.M. (1994) Recent sedimentary records from the Arabian Sea. Proc. Indian. Acad. Sci. (Earth Planet. Sci.) v.103, pp.315–327. DOI:10.1007/BF02839541

Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., Yim, W.W.S. (2002) Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon, v.44 pp.167–180. DOI:10.1017/S0033822200064778

Sruthi, K. V., Kurian, P.J., Rajani, P.R. (2014) Distribution of major and trace elements of a sediment core from the eastern Arabian Sea and its environmental significance. Curr. Sci. v.107, pp.1161–1167.

Staubwasser, M., Sirocko, F., Grootes, P.M., Segl, M. (2003) Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys Res. Lett., v.30, pp.3–6. DOI:10.1029/2002GL016822

Stuiver, M., Reimer, P.J. (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, v.35, pp.215–230.

Tamura, H., Goto, K., Nagayama, M. (1976) The effect of ferric hydroxide on the oxygenation of ferrous ions in neutral solutions. Corros. Sci., v.16, pp.197–207. DOI:10.1016/0010-938X(76)90046-9

Taylor, S.R., McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell, Oxford 312p.

Turekian, K.K., Wedepohl, K.H. (1961) Distribution of the Elements in Some Major Units of the Earth’s Crust. Geol Soc. Am. Bull., v.72, pp.175–192.

Verma, K., Bharti, S.K., Singh, A.D. (2018) Late Glacial–Holocene record of benthic foraminiferal morphogroups from the eastern Arabian Sea OMZ: Paleoenvironmental implications. Jour. Earth Syst. Sci., v.127, pp.21–36. DOI:10.1007/s12040-018-0920-9

Weijden, CH. Van. Der., Reichart, G. J., Os, B.J.H. Van. (2006) Sedimentary Trace Element Records over the last 200 Kyr from within and below the Northern Arabian Sea Oxygen Minimum Zone. Mar Geol., v.231, pp.69–88. DOI:10.1016/j.margeo.2006.05.013

Wyrtki, K. (1973) Physical Oceanography of the Indian Ocean. pp.18–36. Springer, Berlin. DOI:10.1007/978-3-642-65468-8_3

You, Y. (1997) Seasonal variations of thermocline circulation and ventilation in the Indian Ocean. Jour. Geophys Res. Ocean., v.102, pp.10391–10422. DOI:10.1029/96JC03600.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.