Remote Sensing and GIS-Based Accuracy Assessment of LULC Map and Landslide Susceptibility Prediction for Meghalaya, India

Authors

  • Department of Civil Engineering, National Institute of Technology, Shillong - 793 003
  • Department of Civil Engineering, National Institute of Technology, Shillong - 793 003

DOI:

https://doi.org/10.17491/jgsi/2024/173885

Keywords:

Meghalaya, AHP, Landslide susceptibility, LULC, ROC.

Abstract

Through this study, a Landslide Susceptibility Map (LSM) has been developed for the Meghalaya state, India using an Analytical Hierarchy Process (AHP). According to a 2012 Geological Survey of India report, the annual average number of landslides in Meghalaya is nearly 30, which is due to a combination of mountains, steep slopes, and excessive rainfall, leading the state to suffer a huge loss of life and property from landslides. For effective management of the current landslide situation, information about prior landslides is needed. Therefore, the landslide inventory map is prepared with 380 previously occurred events. The Landslide inventory records were separated into training samples (70%) and testing samples (30%) for the purpose of validation. In this regard, the present study has 15 conditioning factors, i.e., slope, rainfall, elevation, relative relief, aspect, distance from the road, curvature, distance from the stream, LULC, lineament density, geomorphology, geology, NDVI, MSAVI, NDWI, which are used to develop susceptibility map. Classification and accuracy assessment of LULC is carried out with segregation as 77% vegetation, 16.4% range land, 3.1% built area, 2.8% crops, 0.4% waterbodies, and 0.3% others (bare land, flooded vegetation, etc.). The Kappa for LULC categorization is 0.92, which is quite satisfactory and suggests that the LULC categorization is reliable. The developed susceptibility map is classified into four different classes, low susceptibility (35%), moderate susceptibility (41%), high susceptibility (20%), and very high susceptibility (4%), and has been verified using physical and Receiver Operating Characteristics (ROC) techniques. Results show that anticipated susceptibility classes are in good match with previous landslide events. The prepared map is reliable and can be used for land-use planning of the state in the future.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2024-05-01

How to Cite

Naveen, B., & Sahoo, S. (2024). Remote Sensing and GIS-Based Accuracy Assessment of LULC Map and Landslide Susceptibility Prediction for Meghalaya, India. Journal of Geological Society of India, 100(5), 622–638. https://doi.org/10.17491/jgsi/2024/173885

References

Abraham, M. T., Satyam, N., Jain, P., Pradhan, B. and Alamri, A. (2021a) Effect of spatial resolution and data splitting on landslide susceptibility mapping using different machine learning algorithms. Geomatics, Natural Hazards and Risk, v.12(1), pp.3381–3408, https://doi.org/10.1080/19475705.2021.2011791.

Abraham, M. T., Satyam, N., Lokesh, R., Pradhan, B. and Alamri, A. (2021b) Factors affecting landslide susceptibility mapping: Assessing the influence of different machine learning approaches, sampling strategies, and data splitting. Land, v.10(9), https://doi.org/10.3390/land10090989.

Asmare, D. (2023) Application and validation of AHP and FR methods for landslide susceptibility mapping around choke mountain, northwestern Ethiopia. Scientific African, v.19, https://doi.org/10.1016/j.sciaf.2022.e01470.

Ayalew, L. and Yamagishi, H. (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, v.65, pp.15–31, https://doi.org/10.1016/j.geomorph.2004.06.010.

Bahrami, Y., Hassani, H. and Maghsoudi, A. (2021) Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province, Iran. GeoJournal, v.86(4), pp.1797–1816, https://doi.org/10.1007/s10708-020-10162-y.

Batar, A. K. and Watanabe, T. (2021) Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian himalayan region: Recent developments, gaps, and future directions. ISPRS Internat. Jour. Geo-Information, v.10(3), https://doi.org/10.3390/ijgi10030114.

Basak, A., Das, J., Rahman, A.T.M.S. and Pham, Q.B. (2021) An Integrated Approach for Delineating and Characterizing Groundwater Depletion Hotspots in a Coastal State of India. Jour. Geol. Soc. India, v.97, pp.1429–1440. https://doi.org/10.1007/s12594-021-1883-z

Beheshti, Z., Gharagozlou, A., Monavari, M. and Zarkesh, M. K. (2021) Landslides behavior spatial modeling by using evidential belief function model, Promethean II model, and index of entropy in Tabriz, Iran. Arab. Jour. Geosci., v.14(17). https://doi.org/10.1007/s12517-021-08172-2.

Bhagya, S. B., Sumi, A. S., Balaji, S., Danumah, J. H., Costache, R., Rajaneesh, A., Gokul, A., Chandrasenan, C. P., Quevedo, R. P., Johny, A., Sajinkumar, K. S., Saha, S., Ajin, R. S., Mammen, P. C., Abdelrahman, K., Fnais, M. S. and Abioui, M. (2023) Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps. Land, v.12(2), https://doi.org/10.3390/land12020468.

Brumbaugh, F. (1955) NDWI- A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. Jour. Experim. Educ., v.23(4), pp.359–363, https://doi.org/10.1080/00220973.1955.11010524.

Chang, Z., Catani, F., Huang, F., Liu, G. and Raj, S. (2022) Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. Jour. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2022.07.009.

Chowdhuri, I., Pal, S.C., Arabameri, A., Ngo, P.T.T., Chakrabortty, R., Malik, S., Das, B. and Roy, P. (2020) Ensemble approach to develop landslide susceptibility map in landslide dominated Sikkim Himalayan region, India, Environ. Earth Sci. v.79 pp.1–28, https://doi.org/10.1007/s12665-020-09227-5

Cutrone, B., Salvatore, W., Renzi, E. and Tamasi, G. (2023) “Guidelines for the classification and management of risk, for the evaluation of safety and for the monitoring of existing bridges”. Critical analysis and identification of innovative methods to improve the classification of landslide risk. Procedia Structural Integrity, v.44, pp.713–720, https://doi.org/10.1016/j.prostr.2023.01.093.

Dai, F.C. and Lee, C.F. (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, v.42 (3-4), pp.213-228. doi.org/10.1016/S0169-555X(01)00087-3

Das, J., Saha, P., Mitra, R., Alam, A. and Kamruzzaman, Md. (2023) GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India, Heliyon, v.9(5). https://doi.org/10.1016/j.heliyon.2023.e16186

Das, J., Gayen, A., Saha, S. and Bhattacharya, S. (2017) Modelling of alternative crops suitability to tobacco based on Analytical hierarchy process in Dinhata subdivision of Koch Bihar district, West Bengal. Model. Earth Syst. Environ., v.3 (7). http://doi:10.1007/s40808-017-0392-y

Demessie, S. and Raghuvanshi, T.K. (2019) Landslide hazard evaluation and zonation in Dilbe Town and its surrounding areas, North-western Central Ethiopia–A GIS based grid overlay statistical approach. Jour. Geomat., v.13 (1).

Dikshit, A., Sarkar, R., Pradhan, B., Segoni, S. and Alamri, A.M. (2020) Rainfall Induced Landslide Studies in Indian Himalayan Region: A Critical Review. Appl. Sci., v.10 (7), 2466. https://doi.org/10.3390/app10072466

Dias, H. C., Hölbling, D. and Grohmann, C. H. (2021) Landslide susceptibility mapping in brazil: A review. Geosciences, v.11(10), pp.1–15, https://doi.org/10.3390/geosciences11100425.

El Jazouli, A., Barakat, A. and Khellouk, R. (2019) GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenviron. Disast., v.6(1), https://doi.org/10.1186/s40677-019-0119-7.

Ercanoglu, M. (2012) A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Nat Hazards, pp.1157–1179. https://doi.org/10.1007/s11069-012-0218-1

IS 1893. (2016). “Criteria for Earthquake resistant design of structures,Part 1:General Provisions and buildings.” Bureau of Indian Standards, New Delhi, (December), pp.1–44.

Islami, F. A., Tarigan, S. D., Wahjunie, E. D. and Dasanto, B. D. (2022) Accuracy Assessment of Land Use Change Analysis Using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conf. Series: Earth and Environmental Science, 950, https://doi.org/10.1088/1755-1315/950/1/012091.

Gautam, N. (2022) Landslide Susceptibility Mapping of Kinnaur District in Himachal Pradesh, India Using Probabilistic Frequency Ratio Model. Jour. Geol. Soc. India, v.98(11), pp.1595–1604, https://doi.org/10.1007/s12594-022-2216-6.

Ghosh, J. K. and Bhattacharya, D. (2010) Knowledge-Based Landslide Susceptibility Zonation System. Jour. Comput. Civil Eng., v.24(4), pp.325–334, https://doi.org/10.1061/(asce)cp.1943-5487.0000034.

GSI (2005) Modified BIS guidelines for macro level landslide hazard zonation mapping. Geol. Surv. India.

Gupta, V., Ram, P., Tandon, R. S. and Vishwakarma, N. (2023) Efficacy of Landslide Susceptibility Maps Prepared Using Different Bivariate Methods: Case Study from Mussoorie Township, Garhwal Himalaya. Jour. Geol. Soc. India, v.99(3), pp.370–376, https://doi.org/10.1007/s12594-023-2319-8.

Hammad Khaliq, A., Basharat, M., Talha Riaz, M., Tayyib Riaz, M., Wani, S., Al-Ansari, N., Ba Le, L. and Thi Thuy Linh, N. (2023) Spatiotemporal landslide susceptibility mapping using machine learning models: A case study from district Hattian Bala, NW Himalaya, Pakistan. Ain Shams Eng. Jour., v.14(3), 101907. https://doi.org/10.1016/j.asej.2022.101907.

Hasekioðullarý, G. D. and Ercanoglu, M. (2012) A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Natural Hazards, v.63(2), pp.1157–1179, https://doi.org/10.1007/s11069-012-0218-1.

Hong, H. (2023) Assessing landslide susceptibility based on hybrid Best-first decision tree with ensemble learning model. Ecological Indicators, v.147, 109968, https://doi.org/10.1016/j.ecolind.2023.109968.

Huang, F., Chen, J., Liu, W., Huang, J., Hong, H. and Chen, W. (2022) Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology, v.408. https://doi.org/10.1016/j.geomorph.2022.108236

Huang, F., Teng, Z., Guo, Z., Catani, F. and Huang, J. (2023) Rock Mechanics Bulletin Uncertainties of landslide susceptibility prediction/ : Influences of different spatial resolutions , machine learning models and proportions of training and testing dataset. Rock Mech. Bull., v.2(1), 100028. https://doi.org/10.1016/j.rockmb.2023.100028

Hussain, G., Singh, Y. and Bhat, G. M. (2018) Landslide Susceptibility Mapping along the National Highway-1D, between Kargil and Lamayuru, Ladakh Region, Jammu and Kashmir. Jour. Geol. Soc. India, v.91(4), pp.457–466, https://doi.org/10.1007/s12594-018-0879-9.

Janzen, D. T., Fredeen, A. L. and Wheate, R. D. (2006) Radiometric correction techniques and accuracy assessment for Landsat TM data in remote forested regions. Canadian Jour. Rem. Sens., v.32(5), pp.330–340, https://doi.org/10.5589/m06-028.

Kalantar, B., Pradhan, B. Amir Naghibi, S., Motevalli, A., and Mansor, S. (2018) Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards and Risk, v.9(1), pp.49–69, https://doi.org/10.1080/19475705.2017.1407368.

Kayastha, P., Bijukchhen, S. M., Dhital, M. R. and De Smedt, F. (2013) GIS based landslide susceptibility mapping using a fuzzy logic approach: A case study from Ghurmi-Dhad Khola area, Eastern Nepal. Jour. Geol. Soc. India, v.82(3), pp.249–261, https://doi.org/10.1007/s12594-013-0147-y.

Kayastha, P., Dhital, M. R. and De Smedt, F. (2013a). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers and Geosciences, v.52, pp.398–408, https://doi.org/10.1016/j.cageo.2012.11.003.

Kayastha, P., Dhital, M. R. and De Smedt, F. (2013b) Evaluation and comparison of GIS based landslide susceptibility mapping procedures in Kulekhani watershed, Nepal. Jour. Geol. Soc. India, v.81(2), pp.219–231, https://doi.org/10.1007/s12594-013-0025-7.

Kumar, A., Satyannarayana, R. and Rajesh, B.G., (2022) Correlation between SPT-N and shear wave velocity (VS) and seismic site classification for Amaravati city, India. Jour. Appl. Geophys., v.205, pp.104757. https://doi.org/10.1016/j.jappgeo.2022.104757.

Kumar, R. and Anbalagan, R. (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. Jour. Geol. Soc. India, v.87(3), pp.271–286, https://doi.org/10.1007/s12594-016-0395-8.

Laura Zangmene, F., Nsangou Ngapna, M., Christian Balla Ateba, M., Marie Monespérance Mboudou, G., Pascal Wabo Defo, L., Tetang Kouo, R., Kagou Dongmo, A. and Owona, S. (2023) Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Bafoussam-Dschang region (West Cameroon). Advan. Space Res., https://doi.org/10.1016/j.asr.2023.02.014.

Lu, P., Qin, Y., Li, Z., Mondini, A. C. and Casagli, N. (2019) Landslide mapping from multi-sensor data through improved change detection-based Markov random field. Rem. Sens. Environ., v.231, 111235. https://doi.org/10.1016/j.rse.2019.111235.

Mandal, B. and Mandal, S. (2018) Analytical hierarchy process (AHP) based landslide susceptibility mapping of Lish river basin of eastern Darjeeling Himalaya, India. Advances in Space Research, v.62(11), pp.3114–3132, https://doi.org/10.1016/j.asr.2018.08.008.

Mao, Z., Shi, S., Li, H., Zhong, J. and Sun, J. (2022) Landslide susceptibility assessment using triangular fuzzy number-analytic hierarchy processing (TFN-AHP), contributing weight (CW) and random forest weighted frequency ratio (RF weighted FR) at the Pengyang county, Northwest China. In: Environ. Earth Sci., v.81(3), https://doi.org/10.1007/s12665-022-10193-3.

Mekonnen, A. A., Raghuvanshi, T. K., Suryabhagavan, K. V. and Kassawmar, T. (2022) GIS-based landslide susceptibility zonation and risk assessment in complex landscape: A case of Beshilo watershed, northern Ethiopia. Environ. Challen., v.8, 100586. https://doi.org/10.1016/j.envc.2022.100586.

Mitra, R., Saha, P. and Das, J. (2022) Assessment of the performance of GIS-based analytical hierarchical process (AHP) approach for flood modelling in Uttar Dinajpur district of West Bengal, India. Geomatics, Natural Hazard and risk, v.13 (1), pp.2183-2226. https://doi.org/10.1080/19475705.2022.2112094

Mohan, A., Singh, A. K., Kumar, B. and Dwivedi, R. (2021) Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerging Telecomm. Tech., v.32(7), https://doi.org/10.1002/ett.3998.

Mokarram, M., and Rassoul, A. (2018) Landslide Susceptibility Mapping Using Fuzzy-AHP. Geotech. Geol. Eng., v.36(6), pp.3931–3943, https://doi.org/10.1007/s10706-018-0583-y.

Negi, I. S., Kumar, K., Kathait, A. and Prasad, P. S. (2013) Cost assessment of losses due to recent reactivation of Kaliasaur landslide on National Highway 58 in Garhwal Himalaya. Natural Hazards, v.68(2), pp.901–914, https://doi.org/10.1007/s11069-013-0663-5.

Oh, H.J. and Pradhan, B. (2011) Application of a neuro-fuzzy model to landslide susceptibility mapping for shallow landslides in tropical hilly area. Computer Geoscience, v.37(9), pp.1264–1276. https://doi.org/10.1016/j.cageo.2010.10.012

Osman, S. and Das, J. (2023) GIS-based flood risk assessment using multi-criteria decision analysis of Shebelle River Basin in southern Somalia. SN Appl. Sci.., v.5, pp.1-17, http://doi:10.1007/s42452-023-05360-5

Pal, S.C. and Chowdhuri, I. (2019) GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India. SN Appl. Sci., v.1(5), pp.1–25, https://doi.org/10.1007/s42452-019-0422-7.

Panchal, S. and Shrivastava, A.K. (2022) Landslide hazard assessment using analytic hierarchy process ( AHP ): A case study of National Highway 5 in India. Ain Shams Eng. Jour., v.13(3), 101626. https://doi.org/10.1016/j.asej.2021.10.021

Pham, B.T., Tien Bui, D., Prakash, I. and Dholakia, M.B. (2017) Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS, Catena v.149 pp.52–63, https://doi.org/10.1016/j.catena.2016.09.007.

Pourghasemi, H.R., Pradhan, B. and Gokceoglu, C. (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, v.63(2), pp.965–996, https://doi.org/10.1007/s11069-012-0217-2

Prieto-Amparan, J. A., Villarreal-Guerrero, F., Martinez-Salvador, M., Manjarrez-Domínguez, C., Santellano-Estrada, E. and Pinedo-Alvarez, A. (2018) Atmospheric and radiometric correction algorithms for the multitemporal assessment of grasslands productivity. Remote Sensing, v.10(2), https://doi.org/10.3390/rs10020219

Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. and Sorooshian, S. (1994). A modify soil adjust vegetation index. Rem. Sens. Environ., v.48, pp.119–126.

Raghuvanshi, T.K., Negassa, L. and Kala, P.M. (2015) GIS based Grid overlay method versus modeling approach – A comparative study for landslide hazard zonation (LHZ) in Meta Robi District of West Showa Zone in Ethiopia. Egyptian Jour. Rem. Sens. Space Sci., v.18(2), pp.235-250. http://doi.org/10.1016/j.ejrs.2015.08.001

Ramli, M. F., Yusof, N., Yusoff, M. K., Juahir, H. and Shafri, H. Z. M. (2010) Lineament mapping and its application in landslide hazard assessment: A review. Bull. Eng. Geol. Environ., v.69(2), pp.215–233, https://doi.org/10.1007/s10064-009-0255-5.

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M. and Guzzetti, F. (2018) A review of statistically-based landslide susceptibility models. Earth-Sci. Rev., v.180, pp.60–91, https://doi.org/10.1016/j.earscirev.2018.03.001.

Riaz, M. T., Basharat, M., Hameed, N., Shafique, M. and Luo, J. (2018) A Data-Driven Approach to Landslide-Susceptibility Mapping in Mountainous Terrain: Case Study from the Northwest Himalayas, Pakistan. Natural Hazards Rev., v.19(4), pp.1–20, https://doi.org/10.1061/(asce)nh.1527-6996.0000302

Rwanga, S. S. and Ndambuki, J. M. (2017) Accuracy Assessment of Land Use / Land Cover Classification Using Remote Sensing and GIS. Internat. Jour. Geosci., v.8, pp.611–622, https://doi.org/10.4236/ijg.2017.84033.

Saaty, T. L. (1990) An Exposition of the AHP in Reply to the Paper “Remarks on the Analytic Hierarchy Process.” Management Science, v.36(3), pp.259–268, https://doi.org/10.1287/mnsc.36.3.259.

Saaty, T. L. (2004) Decision making — the Analytic Hierarchy and Network Processes (AHP/ANP). Jour. Syst. Sci. Syst. Eng., v.13(1), pp.1–35, https://doi.org/10.1007/s11518-006-0151-5.

Sahoo, S. (2021) Meghalaya, Geotechnical Characteristics of Soils and Rocks of India (1st Ed.). Shukla, S.K. (Ed.). CRC Press. https://doi.org/10.1201/9781003177159.

Saha, S., Bera, B., Shit, P.K., Sengupta, D., Bhattacharjee, S., Sengupta, N., Majumdar, P. and Adhikary, P. P. (2023) Modelling and predicting of landslide in Western Arunachal Himalaya, India. Geosyst. Geoenviron., v.2(2), 100158. https://doi.org/10.1016/j.geogeo.2022.100158.

Saha, A. and Saha, S. (2020) Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: a study on Kurseong region of Darjeeling Himalaya, India, Remote Sens. Appl.: Society and Environ. v.19, 100323, https://doi.org/10.1016/j.rsase.2020.100323.

Saha, S., Majumdar, P. and Bera, B. (2023) Deep learning and benchmark machine learning based landslide susceptibility investigation, Garhwal Himalaya (India). Quaternary Sci. Advan., v.10, https://doi.org/10.1016/j.qsa.2023.100075.

Saygin, F., Sisman, Y., Dengiz, O., and Sisman, A. (2023) Spatial assessment of landslide susceptibility mapping generated by fuzzy-AHP and decision tree approaches. Advances in Space Research, https://doi.org/10.1016/j.asr.2023.01.057.

Senouci, R., Taibi, N. E., Teodoro, A. C., Duarte, L., Mansour, H. and Meddah, R. Y. (2021) Gis-based expert knowledge for landslide susceptibility mapping (LSM): Case of Mostaganem coast district, west of Algeria. Sustainability, v.13(2), pp.1–21, https://doi.org/10.3390/su13020630.

Shafizadeh-moghadam, H., Asghari, A., Taleai, M. and Tayyebi, A. (2017) Sensitivity analysis and accuracy assessment of the land transformation model using cellular automata. GIS and Remote Sensing, v.54(5), pp.639–656, https://doi.org/10.1080/15481603.2017.1309125.

Shano, L., Raghuvanshi, T. K. and Meten, M. (2020) Landslide susceptibility evaluation and hazard zonation techniques – a review. Geoenvironmental Disasters, v.7(1), https://doi.org/10.1186/s40677-020-00152-0.

Singh, K. and Kumar, V. (2018) Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. Jour. Mountain Sci., v.15(4), pp.808–824, https://doi.org/10.1007/s11629-017-4634-2.

Sonker, I., Tripathi, J. N. and Singh, A. K. (2021) Landslide susceptibility zonation using geospatial technique and analytical hierarchy process in Sikkim Himalaya. Quaternary Sci. Advan., v.4, 100039. https://doi.org/10.1016/j.qsa.2021.100039.

Sonker, I., Tripathi, J. N. and Swarnim. (2022) Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio method in Sikkim Himalaya. Quaternary Sci. Advan., v.8, 100067. https://doi.org/10.1016/j.qsa.2022.100067.

Talaei, R. (2014) Landslide susceptibility zonation mapping using logistic regression and its validation in Hashtchin Region, northwest of Iran. Jour. Geol. Soc. India, v.84(1), pp.68–86, https://doi.org/10.1007/s12594-014-0111-5.

Taloor, A. K., Joshi, L. M., Kotlia, B. S., Alam, A., Kothyari, G. C., Kandregula, R. S., Singh, A. K. and Dumka, R. K. (2021), Tectonic imprints of landscape evolution in the Bhilangana and Mandakini basin, Garhwal Himalaya, India: A geospatial approach. Quaternary Internat., v.575, pp.21–36, https://doi.org/10.1016/j.quaint.2020.07.021.

Taloor, A. K., Kothyari, G. C., Goswami, A. and Mishra, A. (2022) Geospatial technology applications in Quaternary Science. Quaternary Sci. Advan., v.7, https://doi.org/10.1016/j.qsa.2022.100059

Tung, S. L. and Tang, S. L. (1998) A comparison of the Saaty’s AHP and modified AHP for right and left eigenvector inconsistency. European Jour. Operational Res., v.106(1), pp.123–128, https://doi.org/10.1016/S0377-2217(98)00353-1.

Umrao, R.K., Singh, R., Sharma, L.K. and Singh, T.N. (2017) Soil slope instability along a strategic road corridor in Meghalaya, north-eastern India. Arabian Jour. Geosci., v.10 (12), pp.260, http://doi:10.1007/s12517-017-3043-8

Umrao, R.K., Singh, R., Sharma, L.K. and Singh, T.N. (2016) Geotechnical investigation of a rain triggered Sonapur landslide, Meghalaya. In: INDOROCK201669: 6th Indian Rock Conference 17–18 June2016, pp.303–313

Veerappan, R., Negi, A. and Anbazhagan, S. (2017) Advancing Culture of Living with Landslides. Advancing Culture of Living with Landslides, January 2018. https://doi.org/10.1007/978-3-319-53498-5

Wang, Q., Li, W., Wu, Y., Pei, Y., Xing, M. and Yang, D. (2016) A comparative study on the landslide susceptibility mapping using evidential belief function and weights of evidence models. Jour. Earth Syst. Sci., v.125(3), pp.645–662, https://doi.org/10.1007/s12040-016-0686-x.

Wang, X. and Niu, R. (2009) Spatial forecast of landslides in three gorges based on spatial data mining. Sensors, v.9, pp.2035–2061. https://doi.org/10.3390/s90302035

Wubalem, A. (2021) Landslide susceptibility mapping using statistical methods in Uatzau catchment area, northwestern Ethiopia. Geoenvironmental Disasters, v.8(1), pp.1–21, https://doi.org/10.1186/s40677-020-00170-y.

Yang, S.R. (2017). Assessment of Rainfall-Induced Landslide Susceptibility Using GIS-Based Slope Unit Approach. Jour. Perform. Constructed Facilities, v.31(4), pp.1–8, https://doi.org/10.1061/(asce)cf.1943-5509.0000997.

Yong, C., Jinlong, D., Fei, G., Bin, T., Tao, Z., Hao, F., Li, W. and Qinghua, Z. (2022) Review of landslide susceptibility assessment based on knowledge mapping. Stochastic Environmental Research and Risk Assessment, v.36(9), pp.2399–2417, https://doi.org/10.1007/s00477-021-02165-z.

Zhang, G., Wang, S., Chen, Z., Liu, Y., Xu, Z. and Zhao, R. (2023) Landslide susceptibility evaluation integrating weight of evidence model and InSAR results, west of Hubei Province, China. Egyptian Jour. Rem. Sens. Space Sci., v.26(1), pp.95–106, https://doi.org/10.1016/j.ejrs.2022. 12.010.

Zhou, W., Minnick, M. D., Chen, J., Garrett, J. and Acikalin, E. (2021) GIS-Based Landslide Susceptibility Analyses: Case Studies at Different Scales. Natural Hazards Rev., v.22(3), pp.1–16, https://doi.org/10.1061/(asce)nh.1527-6996.0000485