Assessment of Groundwater Pollution Vulnerability Using GIS-Based DRASTIC Model and its Validation Using Nitrate Concentration in Tandula Watershed, Chhattisgarh

Authors

  • Department of Applied Geology, National Institute of Technology Raipur, GE Road, Raipur – 492 010

DOI:

https://doi.org/10.1007/s12594-019-1218-5

Keywords:

No Keywords

Abstract

Effective management of groundwater resources has now become a global issue and on the other hand industrialization, deforestation and agricultural activities are potential sources of groundwater pollution. Groundwater vulnerability index assessment is an effective tool for groundwater management. In this study DRASTIC model was utilized to evaluate aquifer vulnerability of Tandula watershed, Chhattisgarh, India. Aquifer vulnerability of the study area classified into five categories such as very low (18.68%), low (23.84%), moderate (16.42%), high (23.72%) and very high (17.34%) vulnerability. To validate the DRASTIC model, nitrate concentration was selected and found that it is 82.35% accurate which reflects that, DRASTIC model is appropriate to understand groundwater pollution risk assessment. In the study area groundwater is contaminated mainly due to extensive use of fertilizer for agriculture purpose. Present study will be helpful in proper management and development of available groundwater resource in the study area.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2019-05-02

How to Cite

Jhariya, D. C. (2019). Assessment of Groundwater Pollution Vulnerability Using GIS-Based DRASTIC Model and its Validation Using Nitrate Concentration in Tandula Watershed, Chhattisgarh. Journal of Geological Society of India, 93(5), 567–573. https://doi.org/10.1007/s12594-019-1218-5

References

Ahmed, A.A. (2009) Assessment of groundwater vulnerability in Mettur region, Tamil Nadu, India using DRASTIC and GIS techniques. Hydrogeol. Jour., v.17, pp.1203–1217. doi: 10.1007/s10040-009-0433-3.

Al-abadi, A. M., Aljabbari, M. H., Al-Shamma'a, M. H.(2014) A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate , southern Iraq. Appld. Water Sci., v.7, pp.89–101. doi:10.1007/s13201-014-0221-7.

Al-Adamat, Rida A.N., Foster, Ian D.L. and Baban, Serwan M.J. (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC.

Applied Geography, v.23 (4). pp.303-324. doi: 0.1016/j.apgeog.2003.08.007

Alam, F., Umar R., Ahmed, S., Dar, F. A.(2014) A new model DRASTIC-LU for evaluating groundwater vulnerability in parts of central Ganga Plain India. Arab Jour. Geosci,, v.7, pp.927–937 doi:10.1007/s12517-012-0796y.

Anane, M., Abidi, B., Fethi, L., Atef, L. and Salah, J. (2013) GIS-based DRASTIC, Pesticide DRASTIC and the Susceptibility Index (SI): comparative study for evaluation of pollution potential in the NabeulHammamet shallow aquifer, Tunisia. Hydrogeol. Jour., v.21, pp.715–731.

Antonakos, A.K., Panagopoulos, G.P. and Lambrakis, N.J. (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol. Jour., v.14, pp 894–911. doi:10.1007/s10040-005-0008-x.

Awata, I., Chen, L., Pathak, D. R. and Hiratsuka, A. (2009) Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS-based DRASTIC model. Environ. Geol., v.57, pp.1569–1578.

doi:10.1007/s00254-008-1432-8.

Babiker, I. S., Mohamed, A. A. M., Hiyama, T. and Kato, K.(2005) A GISbased DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights , Gifu Prefecture, central Japan. Scitotenv., v.345, pp.127–140.

Bartzas, G., Tinivella, F., Medini, L, Zaharaki D and Komnitsas K. (2015a) Assessment of groundwater contamination risk in an agricultural area in north Italy. Information Processing in Agriculture, v.2, pp.109–129.

Bartzas, G., Dimitra, Z, Ma. T.H., Jose, L.M.O. and Konstantinos, Komnitsas (2015b) Assessment of Aquifer Vulnerability in an Agricultural Area in Spain Using the DRASTIC Model. Environ. Forensics, v.16(4), pp.356-373.

Beynen, P.E.V., Niedzielski, M.A., Bialkowska-jelinska, E., Alsharif, K. and Matusick, J. (2012) Comparative study of specific groundwater vulnerability of a karst aquifer in central Florida. Appld. Geography, v.32(2), pp.868–877.

Dixon, B. (2005) Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Appld. Geography, v.25(4), pp.327-347.

Feola, G., Lerner, A. M., Jain, M., Joseph, M. and Montefrio, F., Nicholas, K.A. (2015) Researching farmer behaviour in climate change adaptation and sustainable agriculture: Lessons learned from five case studies. Journal of Rural Studies. v.39, pp.4–84.

Guler, C. and Ali, M.(2013) Ocean & Coastal Management Assessment of groundwater vulnerability to nonpoint source pollution in a Mediterranean coastal zone Mersin Turkey under conflicting land use practices.Ocean & Coastal Management, v.71, pp.141–152. doi:10.1016/j.ocecoaman.2012.10.010

Hamza, S.M., Ahsan, A., Imteaz, M.A., Rahman, A., Mohammad, T.A. and Ghazali, A.H. (2014) Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: A review. Environ. Earth Sci., v.73, pp.3063–3076. doi:10.1007/s12665-014-36012.

Herlinger, R.J., Viero, P. A .(2007) Groundwater vulnerability assessment in coastal plain of Rio Grande do Sul State Brazil using drastic and adsorption capacity of soils. Environ. Geol., v.52, pp.819–829.

doi:10.1007/s00254-006-0518-4.

Huan, H., Wang, J. and Teng, Y.(2012) Science of the Total Environment Assessment and validation of groundwater vulnerability to nitrate based on a modi fi ed DRASTIC model: A case study in Jilin City of northeast China. Sci. Tot. Environ., v.440, pp.14–23. doi:10.1016/j.

Iqbal, J., Gorai, A.K., Katpatal, Y.B. and Pathak, G. (2014) Development of GIS-based fuzzy pattern recognition model modified DRASTIC model for groundwater vulnerability to pollution assessment. Int. Jour. Environ. Sci. Tech., v.12, pp.3161–3174 doi:10.1007/s13762-014-0693x.

Jamrah, A., Al-futaisi, A., Rajmohan, N. and Al-yaroubi, S. (2008) Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environ. Monit. Assess., v.147, pp.125–138. doi:10.1007/s10661-007-0104-6.

Javadi, S., Kavehkar, N. and Mohammadi, K. (2011a) Calibrating DRASTIC using field measurements , sensitivity analysis and statistical methods to assess groundwater vulnerability. Water Internat., v.36 (6), pp. 37–41 doi:10.1080/02508060.2011.610921.

Javadi, S., Kavehkar, N., Mousavizadeh, M.H. and Mohammadi, K. (2011b) Modification of DRASTIC Model to Map Groundwater Vulnerability to Pollution Using Nitrate Measurements in Agricultural Areas. Jour. Agr.

Sci. Tech., v.13, pp. 239–249.

Jhariya, D.C., Kumar Tarun, Dewangan Rakesh, P Dharm and Dewangan P. K. (2017) Assessment of Groundwater Quality Index for Drinking Purpose in the Durg District, Chhattisgarh Using (GIS) and (MCDA) Techniques. Jour. Geol. Soc. India, v.89(4), pp.453-459. doi:10.1007/s12594-0170628-5.

Jilali, A.(2014) Vulnerability mapping and risk of groundwater of the oasis of Figuig, Morocco: application of DRASTIC and AVI methods. Arab. Jour. Geosci., v.8(3), pp.1-11. doi: 10.1007/s12517-014-1320-3.

Jin, S. and Ray, C. (2014) Science of the Total Environment Using fuzzy logic analysis for siting decisions of in fi ltration trenches for highway runoff control. Sci. Tot. Env., v.493, pp 44–53.

Khan, Rubia and Jhariya, D. C. (2017) Groundwater Quality Assessment for Drinking Purpose in Raipur City, Chhattisgarh Using Water Quality Index and Geographic Information System. Jour. Geol. Soc. India, v.90(1), pp.69-76. doi:10.1007/s12594-017-0665-0.

Khan, Rubia and Jhariya, D.C. (2018a) Assessment of Land-use and Landcover Change and its Impact on Groundwater Quality Using Remote Sensing and GIS Techniques in Raipur City, Chhattisgarh, India. Jour.

Geol. Soc. India, v.92(1), pp.59-66.

Khan, Rubia and Jhariya, D.C. (2018b) Hydrogeochemistry and Groundwater Quality Assessment for Drinking and Irrigation Purpose of Raipur City, Chhattisgarh, India. Jour. Geol. Soc. India, v.91, pp. 475–482. doi: 10.1007/s12594-018-0881-2.

Li, J., Li, X., Lv, N., Yang, Y., Xi, B., Li, M. and Liu, D.(2015) Quantitative assessment of groundwater pollution intensity on typical contaminated sites in China using grey relational analysis and numerical simulation. Chinese Research Academy of Environmental Sciences. Environ. Earth Sci., v.74, pp.3955–3968. doi: 10.1007/s12665-0143980-4

Li, R. and Merchant, J.W. (2013) Science of the Total Environment Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change/ : A case study in North Dakota, USA. Sci. Tot. Env., v.447, pp.32–45.

Lima, M. L. and Zelaya, K.(2011) Groundwater Vulnerability Assessment Combining the Drastic and Dyna-Clue Model in the Argentine Pampas. Environ. Managmt., v.47(5), pp.828-839. doi: 10.1007/s00267-0119652-1.

Lundstrom, C., Kytzia, S., Walz, A., Adrienne, G. R. and Bebi, P.(2007) Linking Models of Land Use , Resources , and Economy to Simulate the Development of Mountain Regions (ALPSCAPE). Environmental Managmt, v.40, pp.379–393. doi:10.1007/s00267-005-0342-8.

Mogaji, K.A., Lim, H.S. and Abdullah, K. (2013) Modeling groundwater vulnerability prediction using geographic information system GIS -based ordered weighted average OWA method and DRASTIC model theory hybrid approach. Arab Jour. Social Sciences.. doi:10.1007/s12517-0131163-3.

Moghaddam, A., Fijani, A. and Nadiri, A. (2010) Groundwater Vulnerability Assessment Using GIS-Based DRASTIC Model in the Bazargan and Poldasht Plains. Jour. Environ. Studies, v.35(52), pp.35–37.

Naqa, A.E. (2004) Aquifer vulnerability assessment using the DRASTIC model at Russeifa landfill, northeast Jordan. Environ. Geol., v.47(1), pp.51-62. doi:10.1007/s00254-004-1126-9.

Neshat, A. and Pradhan, B. (2015) An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment. Nat Hazards, v.76, pp.543–563. doi: 10.1007/s11069-0141503-y.

Neshat, A., Pradhan, B. and Shafri, H.Z.M. (2014a) An Integrated GIS Based Statistical Model to Compute Groundwater Vulnerability Index for Decision Maker in Agricultural Area. Jour Indian Soc. Remote Sens., v.42, pp.777–788. doi:10.1007/s12524-014-0376-6.

Neshat, A., Pradhan, B., Piraste, S. and Shafri, H.Z.M. (2014b) Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area. Iran Environ. Earth Sci., v.71, pp.3119– 3131. doi:10.1007/s12665-013-2690-7.

Neshat, A., Pradhan, B. and Dadras, M. (2014c) Resources, Conservation and Recycling Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resources, Conservation & Recycling, resconrec, v.86, pp.74–86.

Pacheco, F.A.L., Pires, L. M.G.R., Santos, R.M.B. and Fernandes, L.F.S. (2015) Factor weighting in DRASTIC modeling. Sci. Total Environ., v.505, pp.474–486. doi:10.1016/j..2014.09.092.

Rajasooriyar, L.D., Boelee, E., Prado, M.C.C.M. and Hiscock, K.M. (2013) Mapping the potential human health implications of groundwater pollution in southern Sri Lanka. Water Resources and Rural Development, v.1(2), pp 27–42. doi:10.1016/j.wrr.2013.10.002.

Rahman, A. (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh , India, Applied Geography, v .28(1), pp.32–53. doi:10.1016/j.apgeog.2007.07.008.

Saadeh, H.A.M. (2009) Geostatistical Assessment of Groundwater Nitrate Contamination with Reflection on DRASTIC Vulnerability Assessment: The Case of the Upper Litani Basin, Lebanon M. Water Resour Manage, v.23(4), pp.775–796. doi:10.1007/s11269-008-9299-8.

Sener, E. and Aysen, D. (2013) Assessment of groundwater vulnerability based on a modií»ed DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey), Hydrogeol. Jour., v.21, pp.701–714.

Shekhar, S., Pandey, A.C. and Tirkey, A.S. (2015) A GIS-based DRASTIC model for assessing groundwater vulnerability in hard rock granitic aquifer. Arab. Jour. Geosci., v.8, pp.1385–1401. doi:10.1007/s12517-0141285-2.

Shirazi, S. M., Imran, H. M., Akib, S.,Yusop, Z. and Harun, Z. B. (2013) Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environ. Earth Sci, v.70, pp. 2293– 2304. doi: 10.1007/s12665-013-2360-9.

Sorichetta, A., Masetti, M., Ballabio, C., Sterlacchini, S. and Pietro, G. (2011) Reliability of groundwater vulnerability maps obtained through statistical methods. Jour. Environ. Managmt., v.92(4), pp.1215–1224.

Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M., Sarma, V. S., Rajivgandhi, R., Chidambaram, S., Anandhan, P. and Manivannan, R. (2011) Assessment of groundwater vulnerability in Mettur region, Tamil Nadu, India using drastic and GIS techniques, Arab Jour. Geosci., v.4, pp.1215–1228. doi:10.1007/s12517-010-0138-x

Thirumalaivasan, S.K.D. (2014) GIS Based Assessment of Groundwater Vulnerability Using Drastic Model. Arabian Jour. Sci. Engg., v.39(1), pp.207–216 doi:10.1007/s13369-013-0843-3.

Tilahun, K. and Merkel, B. J.(2010) Assessment of groundwater vulnerability to pollution in Dire Dawa, Ethiopia using DRASTIC. Environ. Earth Sci., v. 59(7), pp.1485–1496. doi:10.1007/s12665-009-0134-1.

Vargay, Z. (2009) Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary 's main aquifer using DRASTIC and GLEAMS models. Jour. Environ. Managmt., v.90(10), pp.2969-2978. 2969–2978. doi:10.1016/j.

Wang J, He J and Chen H (2012a) Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Sci. Tot. Env., v.432, pp.216– 226.

Yang, Y.S. and Wang, L. (2010) Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method: a case study Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method/ : a case study. Hydrol. Sci. Jour., v.55(7), pp.1206–1216. doi:10.1080/02626667.2010.508872.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)