Geoelectric Imaging to Assess Aquifer Conditions in Raipur City, Chhattisgarh, India, Using Schlumberger Method

Authors

  • Department of Applied Geology, National Institute of Technology Raipur, GE Road, Raipur - 492 010
  • Department of Applied Geology, National Institute of Technology Raipur, GE Road, Raipur - 492 010
  • India Meteorological Department, National Centre for Seismology, New Delhi - 110 003

DOI:

https://doi.org/10.1007/s12594-021-1795-y

Keywords:

No Keywords

Abstract

Geoelectric imaging is carried out to assess aquifer conditions using Schlumberger soundings in Raipur city, Chhattisgarh, India. A total of 80 vertical electric soundings were conducted at different geological conditions for the entire study area. The layer parameters, resistivity, and thickness are obtained from the recorded field resistivity data through a 1-D sounding inversion software. Five geoelectric cross-sections along the east to the west, starting from north to south in the study area, are selected to overview sub-surface resistivity variation. Resistivity contour maps are prepared layer-wise for depth 10m, 30m, 50m, 70m, and 100m to understand sub-surface heterogeneity. The factor analysis technique was utilized to identify probable fracture zones. The obtained results may be useful to the researchers for pinpointing the drilling site for groundwater sustainable groundwater development and management by selecting artificial recharge sites, rainwater harvesting, and urban planning.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2023-12-16

How to Cite

Mondal, K. C., Jhariya, D. C., & Mandal, H. S. (2023). Geoelectric Imaging to Assess Aquifer Conditions in Raipur City, Chhattisgarh, India, Using Schlumberger Method. Journal of Geological Society of India, 97(8), 943–950. https://doi.org/10.1007/s12594-021-1795-y

References

Battacharya, P.K. and Petra, H.P. (1968) Direct current geoelectrical sounding. Elsevier Publishing Co., Amsterdam, 131p.

Chandra, S., Ahmed, S., Ram, A., Dewandel, B. (2008) Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application, Jour. Hydrol., v.357(3), pp.218-227. DOI:10.1016/j.jhydrol.2008.05.023

Dahlin, T. (1996) 2D resistivity surveying for environmental and engineering applications. First Break, v.14(7), pp.275-283. DOI:10.3997/1365- 2397.1996014

Flathe, H. (2006) Five-layer Master Curves for the Hydrogeological Interpretation of Geoelectrical Resistivity Measurements above a Two- Storey Aquifer. Geophys. Prospect., 11. pp.471 - 490. DOI: 10.1111/ j.1365-2478.1963.tb02048.x

Meju, M.A. (2005) Simple relative space-time scaling of electrical and electromagnetic depth sounding arrays: implications for electrical static shift removal and joint DC TEM data inversion with the most-squares criterion. Geophys. Prospect., v.53, pp.463–479. DOI: 10.1111/j.1365- 2478.2005.00483.x

Metwaly, M, El-Qady G, Massoud U El-Kenawy, A. Matsushima, J., Al-Arifi (2010) Integrated geoelectrical survey for groundwater and shallow subsurface evaluation: case study at Siliyin spring, El-Fayoum, Egypt. Internat. Jour. Earth Sci. (GeolRundsch), v.99, pp.1427–1436. DOI:10.1007/s00531-009-0458-9

Mundry, E. and Dennert, U(1980). Das umkehrproblem in der geophysik. Geologisches Jahrbuch, Reihe, v.E19, pp.19-39.

Ndlovu, S., Mpofu V., Manatsa D., Muchuweni, E. (2010) Mapping groundwater aquifers using dowsing, slingram electromagnetic survey method and vertical electrical sounding jointly in the granite rock formation: a case of Matshetshe rural area in Zimbabwe. Jour. Sustain. Develop. Afr., v.12(5), pp.199-208.

Nowroozi, A. A. , Horrocks, S. B., Henderson, P. (1999) Saltwater intrusion into the freshwater aquifer in the eastern shore of Virginia: a reconnaissance electrical resistivity survey. Jour. Appl. Geophys., v.42, pp.1–22. DOI:10.1016/S0926-9851(99)00004-X.

Olayinka, A. I. (1991) Geophysical siting of boreholes in crystalline basement areas of Africa. Jour. Afr. Earth Sci., v.14(2), pp.197–207. DOI: 10.1016/ 0899-5362(92)90097-V.

Rolia, E, and Sutjiningsih, D. (2018) Application of Geoelectric Method for Groundwater Exploration from Surface (A Literature Study). AIP Conference Proceedings 1977, 020018; DOI:10.1063/1.504 2874.

Souza, I.V.F. de , Lucena, L. R. F. de, Bezerra, F.H.R., Filho J.B. D. (2019) Use of hydrogeophysical data to determine the role of faults in the geometry of the Barreiras Aquifer, Brazil. Brazilian J.our Geol., v.49(2), pp.e20170141, DOI:10.1590/2317-4889201920170141.

Stewart, M.T. (1982) Evaluation of electromagnetic methods for rapid mapping of saltwater interfaces in coastal aquifers. Jour. Groundwater, v.20, pp.538–545. DOI: 10.1111/j.1745-6584.1982.tb01367.x

Telford, W.M., Geldart, L.P., Sheriff, R.E.,Keys, D.A. (1990) Applied Geophysics. Cambridge University Press, UK.

Van Overmeeren, R. (1989) Aquifer boundaries explored by geo-electrical measurements in the coastal plain of Yemen- A case of equivalence, Geophysics, v.54, pp.38–48.

Zohdy, A. (1989) A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics, v.54. DOI: 10.1190/1.1442648.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)