Distribution of Inertinites in the Early Paleogene Lignites of Western India: On the Possibility of Wildfire Activities

Authors

  • Coal and Organic Petrology Lab, Center for Advanced Study in Geology, Banaras Hindu University, Varanasi - 221 005
  • Coal and Organic Petrology Lab, Center for Advanced Study in Geology, Banaras Hindu University, Varanasi - 221 005
  • Coal and Organic Petrology Lab, Center for Advanced Study in Geology, Banaras Hindu University, Varanasi - 221 005

DOI:

https://doi.org/10.1007/s12594-019-1213-x

Keywords:

No Keywords

Abstract

In the present investigation 643 samples from early Paleogene lignite seams of western India have been studied to see the distribution of inertinites. These horizons are characterized by high content of charcoal occuring as inertinite in these lignites though there is no definite trend of inertinite distribution in space and time. Bhavnagar lower seam of the Saurashtra basin, Gujarat (BHL-6 band) and Gurha lignite seam of the Bikaner-Nagaur basin, Rajasthan (GU-8 band) recorded the highest level of charcoal to the tune of 25% (mmf basis) while the mean seam value of 16.6% is seen in the Seam-V of Panandhro lignite field of the Kachchh basin, Gujarat. The study is comparable with the wildfire activities of Early Paleogene period occurring in other parts of the world.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2019-05-05

How to Cite

Rajak, P. K., Singh, V. K., & Singh, P. K. (2019). Distribution of Inertinites in the Early Paleogene Lignites of Western India: On the Possibility of Wildfire Activities. Journal of Geological Society of India, 93(5), 523–532. https://doi.org/10.1007/s12594-019-1213-x

References

Agrawal, S., Verma, P., Rao, M.R., Garg, R., Kapur, V.V., Bajpai, S. (2017) Lignite deposits of the Kutch Basin, western India: Carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2. Jour. Asian Earth Sci., v.146, pp.296–303.

Bajpai, So; Kapur, V. V.; Das, Do P.; Tiwari, B. N.; Saravanan, N. and Sharma, R. (2005) Early Eocene land mammals from Vastan Lignite Mine, District Surat (Gujarat), western India. Jour. Palaeont. Soc. India, v.50(1), pp.101-113.

Belcher, C.M., Mander, L., Rein, G., Jervis, F.X., Haworth, M., Hesselbo, S.P., Glasspool, I.J., McElwain, J.C. (2010a) Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change: Nature Geoscience, v.3, pp.426–429, doi: 10.1038/ngeo871.

Belcher, C.M., Yearsley, J.M., Hadden, R.M., McElwain, J.C., Rein, G. (2010b) Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years: National Acad. Sci. Proc., v.107, pp.22448-22453, doi: 10.1073/pnas.1011974107.

Belcher, C.M., Collinson, M.E., Scott, A.C. (2013) A 450 million year record of fire, in Belcher, C.M. (Ed.), Fire phenomena and the Earth system” An interdisciplinary approach to fire science: Chichester, UK, John Wiley and Sons Ltd, pp.229–249.

Benton, M.J. (2003) When life nearly died: The Greatest Mass Extinction of all time. Thames & Hudson, London, New York.

Benton, M.J., Twitchett, R.J. (2003) How to kill (almost) all life: the endPermian extinction event. Trends in Ecology & Evolution, v.18, pp.358– 365.

Bergman, N.M., Lenton, T.M., Watson, A.J. (2004) COPSE: A new model of biogeochemical cycling over Phanerozoic time: Amer. Jour. Sci., v.304, pp.397–437, doi: 10.2475/ajs.304.5.397.

Berner, R.A. (2001) Modelling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta, v.65, pp.685–694.

Berner, R.A. (2005) The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim. Cosmochim. Acta, v.69, pp.3211–3217.

Berner, R.A. (2006) GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta, v.70, pp.5653– 5664, doi: 10.1016 /j.gca.2005.11.032.

Berner, R.A. (2009) Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model: Amer. Jour. Sci., v.309, pp.603–606, doi:10 .2475/07.2009.03.

Berner, R., Beerling, D., Dudley, R., Robinson, J., Wildman, R. (2003) Phanerozoic atmospheric oxygen. Ann. Rev. Earth Planet. Sci., v.31, pp.105–134.

Berner, R.A., Canfield, D.E. (1989) A new model for atmospheric oxygen over Phanerozoic time. Amer. Jour. Sci., v.289, pp.333–361.

Biswas, S.K. (1992) Tertiary stratigraphy of Kutch. Jour. Palaeont. Soc. India, v.37, pp.1-29.

Bhattacharya, N.B. and Datta, A., 1985. A report on the lignite occurrences around Botiya-Bharka-Thumbli area, Barmer district, Rajasthan. Geol. Surv. India. Unpubld. Prog. Rep., pp.1-8.

Blackford, J.J. (2000) Charcoal fragments in surface samples following a fire and the implications for interpretation of subfossil charcoal data. Palaeogeo., Palaeoclimat., Palaeoeco., v.164, pp.33–42.

Clark, J.S. (1988) Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quaternary Res. v.30, pp.67– 80.

Clark, J.S., Lynch, J., Stocks, B.J., Goldammer, J.G. (1998) Relationships between charcoal particles in air and sediments in west-central Siberia. The Holocene, v.8, pp.19–29.

Cochrane, M.A. (2003) Fire science for rainforests. Nature, v.421, pp.913– 919.

Diessel, C.F.K. (2010) The stratigraphic distribution of inertinite: International Jour. Coal Geol., v.81, pp.251–268, doi: 10.1016 /j.coal.2009.04.004.

DiMichele, W.A., Montañez, I.P., Poulsen, C.J., and Tabor, N.J. (2009) Climate and vegetational regime shifts in the late Paleozoic ice age earth. Geology, v.7, pp.200–266, doi:10.1111/j.1472-4669.2009.00192.x.

Dutta, S., Mathews, R.P., Singh, B.D., Tripathi, S.K.M., Singh, A., Saraswati, P.K., Banerjee, S. and Mann, U. (2011) Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: implications to depositional environment and hydrocarbon source potential. Internat. Jour. Coal Geol., v.85, pp.91-102.

Flannigan, M.D., Krawchuk, M.A., de Groot, W.J., Wotton, B.M., Gowman, L.M. (2009) Implications of changing climate for global wildland fire. Internat. Jour. Wildland Fire, v.18, pp.483–507, doi: 10.1071/WF08187.

Glasspool, I.J., Scott, A.C. (2010)Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci., v.3, pp.627–630.

Glasspool, I.J., Scott, A.C. (2013) Identifying past fire events, in Belcher, C.M., (Ed.), Fire phenomena and the Earth system: An interdisciplinary guide to fire science: Oxford, John Wiley & Sons, pp.179–205, doi: 10 .1002/9781118529539.ch10.

Hudspith, V., Scott, A.C., Collinson, M.E., Pronina, N., Beeley, T. (2012) Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: An example from the Late Permian, Kuznetsk Basin, Russia: Internat. Jour. Coal Geol., v.89, pp.13–25, doi: 10.1016 /j.coal.2011.07.009.

Inglis, G.N., Collinson,M.E.,Wilde, V., Riegel,W., Lenz, O., Robson, B.E., Pancost, R.D. (2015) Ecological and biogeochemical change in an early Paleogene peat-forming environment: linking biomarkers and palynology. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.438, pp.245-255. doi: 10.1016/j.palaeo.

ICCP (1963) International Committee for Coal Petrology. International Handbook of Coal Petrography. Centre National De La Recherche Scientifique, France.

International Committee for Coal Petrology (ICCP) (1993) International Handbook of Coal Petrography, 2nd Edn., 3rd Suppl., University of Newcastle upon Tyne, England.

ICCP (2001) International Committee for Coal Petrology. The new inertinite classification (ICCP System 1994). Fuel, v.80, pp.459–471.

Jasper, A., Agnihotri, D., Tewari, R., Spiekermann, R., Pires, E.F., Da Rosa, í.A.S., Uhl, D. (2016) Fires in the mire: Repeated fire events in Early Permian ‘peat forming' vegetation of India. Geol. Jour., doi: 10.1002 / gj.2860.

Jodha, B.S. (2009) Report on search for lignite by scout drilling in Borana East area, Palana basin, Bikaner and Jaisalmer districts, Rajasthan. Geol. Surv. India. Unpubld. Progess Report.

Jodha, B.S. (2003). A final report on regional exploration for lignite in Mahabar –Shivkar area, Barmer district, Rajasthan, Geol. Surv. India. Unpub. Prog. Rep. F.S., (1999 –2000 to 2001-2002 and 2002-2003).

Kar, R.K., Sharma, P. (2001) Palynostratigraphy of Late Palaeocene and Early Eocene sediments of Rajasthan, India. Palaeontogr. B256, pp.123–157.

Kumar, M., Spicer, R.A., Spicer, T.E.V.,Shukla, A., Mehrotra, R.C., Monga, P. (2016) Palynostratigraphy and palynofacies of the early Eocene Gurha lignite mine, Rajasthan, India. Palaeogeo., Palaeoclimat., Palaeoeco., v.461. pp.98-108.

Kurtz, A.C., Kump, L.R., Arthur, M.A., Zachos, J.C., Paytan, A. (2003) Early Cenozoic decoupling of the global carbon and sulfur cycles: Paleoceanography, v.18, pp.1090, doi:10.1029/2003PA000908.

Lenton, T.M. (2013) Fire feedbacks on atmospheric oxygen, in Belcher, C.M., (Ed.), Fire phenomena and the Earth system: An interdisciplinary guide to fire science: Oxford, John Wiley & Sons, pp.289–308, doi: 10.1002/ 9781118529539.ch15.

Macdougall, J. D. (2011) Why geology matters: Decoding the past, Anticipating the future. University of California Press. 304p.

Marlon, J., Bartlein, P.J., Walsh, M.K., Harrison, S.P., Brown, K.J., Edwards, M.E., Higuera, P.E., Power, M.J., Anderson, R.S., Briles, C., Brunelle, A., Carcaillet, C., Daniels, M., Hu, F.S., Lavoie, M., Long, C., Minckley, T., Richard, P.J.H., Scott, A.C., Shafer, D.S., Tinner, W., Umbanhowar, C.E., Whitlock, C. (2009) Wildfire responses to abrupt climate change in North America. Proc. National Acad. Sci., v.106, pp.2519–2524.

Mathur, L.P., Rao, K.L.N. and Chaube, A.N. (1968) Tectonic framework of the Cambay Basin, India, Bull. ONGC, India, v.51, pp.7-28.

Moore, T.C., Shearer, J.C. (2003) Peat/coal type and depositional environmentare they related? Internat. Jour. Coal Geol. 56, pp.233–252.

Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damste, J.S., Dickens, G.R., the Expedition 302 Scientists, (2006) Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature, v.442, pp.671–675.

Page, S.E., Siegert, F., Rieley, J.O., Boehm, H.D.V., Jaya, A., Limin, S. (2004) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, v.420, pp.61-65.

Pancost, R.D., Steart, D.S., Handley, L., Collinson, M.E., Hooker, J.J., Scott, A.C., Grassineau, N.V., Glasspool, I.J. (2007) Increased terrestrial methane cycling at the Palaeocene-Eocene thermal maximum. Nature, v.449, pp.332–335.

Pandey, J., Singh, N.P., Krishna, B.R., Sharma, D.D., Paraikh, A.K., Nath, S.S. (1993) Lithostratigraphy of Indian Petroliferous Basins DocumentIII, Cambay Basin, KDM Institute of Petroleum Exploration ONGC, Dehradun, Allied Printers. pp.1-166,

Paul, S., Sharma, J., Singh, B.D., Saraswati, P.K., Dutta, S. (2015) Early Eocene equatorial vegetation and depositional environment. Internat. Jour. Coal Geol., v.149, pp.77–92.

Poulsen, C. J. Tabor, C., White, J. D. (2015) Long-term climate forcing by atmospheric oxygen concentrations, Science, v.348 (6240), pp.1238-1241.

Prasad, V., Singh, I.B., Bajpai, S., Garg, R., Thakur, B., Singh, A., Saravanan, N., Kapur, V.V. (2013) Palynofacies and sedimentology-based highresolution sequence stratigraphy of the lignite-bearing muddy coastal deposits (Early Eocene) in the Vastan Lignite Mine, Gulf of Cambay, India. Facies, v.59, pp.737–761.

Rajak, P. K.., V.K, Singh, Singh, P.K., Singh, M. P. and Singh, A. K. (2018) Environment of Paleomire of lignite seams of Bikaner-Nagaur Basin, Rajasthan (W. India): Petrological implications. Internat. Jour. Oil, Gas and Coal Technology (in press).

Rana, R.S., Kumar, K., Singh, H, Bose, K.D. (2005) Lower vertebrates from the late Paleocene-Early Eocene Akli Formation, Giral lignite mine, Barmer District, Western India. Curr. Sci., v.89(9), pp.1606-1613.

Robinson, J.M. (1989) Phanerozoic O2 variation, fire, and terrestrial ecology. Palaeogeo,, Palaeoclimat,, Palaeoecol., v.75, pp.223–240.

Robinson, J.M. (1991) Phanerozoic atmospheric reconstructions: a terrestrial perspective. Palaeogeo,, Palaeoclimat,, Palaeoecol., v.97, pp.51–62.

Robson, B.E., Collinson, M.E., Riegel, W., Wilde, V., Scott, A.C., Pancost, R.D. (2015) Early Paleogene wildfires in peat-forming environments at Schöningen, Germany: Palaeogeo., Palaeoclimat. Palaeoecol., v.437, pp.53–62, doi: 10.1016/j.palaeo .2015 .07 .016.

Schopf J.M., (1960) Field description and sampling of coal beds. USGS Bull., B 1111, pp.25–69.

Scott, A.C. (1989) Observations on the nature and origin of fusain. International Jour. Coal Geol., v.12, pp.443–475.

Scott, A.C. (1991) Coal: Its origin and future. Teaching Earth Sciences, v.16, pp.24–36.

Scott, A.C. (2000) The pre-Quaternary history of fire. Palaeogeo., Palaeoclimat., Palaeoecol., v.164, pp.281–329.

Scott, A.C. (2010) Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeo., Palaeoclimat., Palaeoecol., v.291, pp.11–39, doi: 10.1016/j.palaeo.2009.12.012.

Scott, A.C., Glasspool, I.J. (2006) The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. National Acad. Sci. Proc., v.103, pp.10861–10865, doi: 10 .1073/pnas .0604090103.

Scott, A.C., Glasspool, I.J. (2007) Observations and experiments on the formation and origin of inertinite group macerals: Internat. Jour. Coal Geol., v.70, pp.53–66, doi: 10.1016/j.coal.2006.02.009.

Scott, A.C., Bowman, D.M.J.S., Bond, W.J., Pyne, S.J., Alexander, M.E. (2014) Fire on Earth: An Introduction. First edition. Wiley-Blackwell, Chichester.

Shen, W.J., Sun, Y.G., Lin, Y.T., Liu, D.H., Chai, P.X. (2011) Evidence for wildfire in the Meishan section and implications for Permian Triassic events. Geochim. Cosmochim. Acta, v.75, pp.1992–2006, doi: 10.1016/j.gca.2011.01.027.

Singh, P.K., Singh, M.P. and Singh, A.K. (2010) Petro-chemical characterization and evolution of Vastan Lignite, Gujarat, India. Internat. Jour. Coal Geol., v.82(1-2), pp.1-16.

Singh, P.K.. Singh, M. P Singh, A. K. Naik, A. S. Singh, Vikas K Singh, Vijay K and Rajak P. K. (2012. Petrological and geochemical investigations of Rajpardi lignite deposit, Gujarat, india. Energy, Exploration and Exploitation. v.30(1) pp.131-152.

Singh, P.K., Rajak, P.K., Singh, M.P. Singh, V.K., Naik, A.S. (2016a) Geochemistry of Kasnau-Matasukh lignites, Nagaur basin, Rajasthan, India. Internat. Jour. Coal Sci. Tech., v.3(2), pp.104–122.

Singh, P.K., Rajak, P.K., Singh, M.P., Singh, V.K., Naik, A.S., Singh, A.K., (2016b) Peat swamps at Giral lignite field of Barmer basin, Rajasthan, Western India: Understanding the Evolution through Petrological Modelling. Internat. Jour. Coal Sci. Tech., v.3(2), pp.148–164.

Singh, P. K., Singh, V. K., Rajak, P. K., Singh, M. P., Naik, A. S., Raju S.V., Mohanty, D. (2016c) Eocene lignites from Cambay basin, Western India: an excellent source of Hydrocarbon. Geoscience Frontier, v.7, pp.811-819.

Singh, P. K., Rajak, P. K., Singh, V. K., Singh, M. P., Naik, A. S. and Raju, S.V.. (2016d) Studies on thermal maturity and hydrocarbon potential of lignites of Bikaner-Nagaur basin, Rajasthan. Energy, Exploration and Exploitation, SAGE Pub. Co. Ltd, UK., v.34(1), pp.140-157.

Singh, P.K., Singh, V.K., Rajak, P.K., Singh, M.P. and Naik, A. S. (2016e) Distribution and geochemistry of selected trace elements in the lignites of Cambay basin, Gujarat, Western India. Jour.Geol Soc. India, v.88, pp.131-146.

Singh, P.K., Singh, V.K., Singh, M.P., Rajak, P.K. (2017a) Petrographic characteristics and Paleoenvironmental history of Eocene lignites of Cambay basin, Western India. Internat. Jour. Coal Sci. Tech., v.4(3), pp.214–233.

Singh, P.K., Singh, V.K., Singh, M.P., Rajak, P.K. (2017b) Understanding the paleomires of Eocene lignites of Kachchh basin, Gujarat (Western India): Petrological implications. Internat. Jour. Coal Sci. Tech., v.4(2), pp.80101. doi: 10.1007/s40789-017-0165-2.

Singh, P.K., Singh, V.K., Singh, M.P., Rajak, P.K. (2017c) Paleomires of Eocene lignites of Bhavnagar, Saurashtra Basin (Gujarat), Western India: Petrographic implications. Jour. Geol. Soc. India, v.90, pp.919.

Singh, V.P., Singh, B.D., Mathews, R.P., Singh, A., Mendhe, V.A., Singh, M.P., Mishra, S., Dutta, S., Mahesh Shivanna, M., and Singh, P.K. (2017d) Investigation on the lignite deposits of Surkha mine (Saurashtra Basin, Gujarat), western India: their depositional history and hydrocarbon generation potential. Internat. Jour. Coal Geol. (in press; doi:10.1016/j.coal.2017.09.016).

Sluijs, A, Brinkhuis, H., Crouch, E.M., John, CM, Handley, L., Munsterman, D., Bohaty, S.M., Zachos, J.C, Reichart, G.J., Schouten, S., Pancost, R.D., Sinninghe Damste´ J.S., Welters, L.D.N, Lotter, A.F., Dickens, G.R. (2008) Eustatic variations during the Paleocene-Eocene greenhouse world. Paleoceanography 23: PA4216.

Sí½korová, I., Pickel,W., Christanis, K.,Wolf, M., Taylor, G.H., Flores, D. (2005) Classification of huminite – ICCP System 1994. Internat. Jour. Coal Geol., v.62, pp.85–106.

Sun YZ, Zhao CL, Püttmann ,W., Kalkreuth, W., Qin, S. (2017) Evidence of widespread wildfires in a coal seam from the middle Permian of the North China Basin. Lithosphere. The Geological Society of America, Epub ahead of print 18 May 2017. DOI: 10.1130/L638.1.

Taylor G.H., Teichmüller M., Davis A., Diessel C.F.K., Littke R., Robert P., (1998) Organic Petrology. Gebrüder Borntraeger, Berlin, Stuttgart. pp.704.

Teichmüller, M. (1989) The genesis of coal fromthe viewpoint of coal petrology. Internat. Jour. Coal Geol., v.12, pp.1–87.

Tripathi, S.K.M., Kumar, M., Srivastava, D. (2009) Palynology of Lower Palaeogene (Thanetian-Ypressian) coastal deposits from Barmer Basin (Akli Formation, Western Rajasthan, India: palaeoenvironmental and palaeoclimatic implications. Geol. Acta, v.7(1, 2), pp.147–160.

Watson, A.J., Lovelock, J.E., Margulis, L. (1978) Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems, v.10, pp.293– 298.

Westerling, A.L., Hidalgo, H.G., Cayan, D.R., Swetnam, T.W. (2006) Warming and earlier spring increase Western U.S. forest wildfire activity. Science v.313, pp.940–943.

Wildman, R.A., Hickey, L.J., Dickinson, M.B., Berner, R.A., Robinson, J.M., Dietrich, M., Essenhigh, R.H., Wildman, C.B. (2004) Burning of forest materials under late Paleozoic high atmospheric oxygen levels: Geology, v.32, pp.457–460, doi: 10 .1130/G20255 .1.

Zachos, J.C., Dickens, G.R., Zeebe, R.E. (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, v.451, pp.279–283.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>