Early Palaeogene Climate Variability Based on <i>n</i>-alkane and Stable Carbon Isotopic Composition Evidenced from the Barsingsar Lignite-bearing Sequence of Rajasthan

Authors

  • Organic Petrology Group, Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow - 226 007
  • Organic Petrology Group, Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow - 226 007
  • Organic Petrology Group, Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow - 226 007
  • Organic Petrology Group, Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow - 226 007
  • MPS Lab of Coal and Organic Petrology, Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi - 221 005
  • Organic Petrology Group, Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow - 226 007
  • Organic Petrology Group, Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow - 226 007

DOI:

https://doi.org/10.1007/s12594-020-1423-2

Keywords:

No Keywords.

Abstract

The assessment of variations and the reconstruction of palaeoclimate, based on the distribution of n-alkanes and stable carbon isotope data, during early Palaeogene have been made on the Barsingsar lignite-bearing sequence associated with Palana Formation (Bikaner-Nagaur basin). The distribution pattern of various n-alkanes and the derived indices/ratios have widely been used as palaeoclimate indicators in several depositional realms. The distribution of n-alkanes in the studied sequence varies from C13 to C34. The values of calculated n-alkane parameters range from 26.20-28.39 (aliphatic chain length (ACL) index); 0.32-7.21 (low-to-higher molecular weight (L/H) ratio); 0.42-0.85 (Proxy wax (Pwax)); 0.20-0.67 (Proxy aqueous (Paq)); 0.28-5.22 (terrigenous/aquatic ratio (TAR)); 0.16-0.79 (C23/C29 ratio); 1.14-6.31 (C27/C31 ratio) and 1.47-7.02 (C29/C31 ratio). The δ13C varies from -24.8 to -26.1 "° and the TOC varies from 9.6 to 69.5 wt.%. All these variations indicate the changes in palaeoclimate from dry and warm to cool and wet conditions during the deposition of this lignite-bearing sequence. Further, it is also suggested that the climatic condition was cooler than that of the Palaeocene-Eocene thermal maximum (PETM) event.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2020-03-31

How to Cite

Mathews, R. P., Chetia, R., Agrawal, S., Singh, B. D., Singh, P. K., Singh, V. P., & Singh, A. (2020). Early Palaeogene Climate Variability Based on <i>n</i>-alkane and Stable Carbon Isotopic Composition Evidenced from the Barsingsar Lignite-bearing Sequence of Rajasthan. Journal of Geological Society of India, 95(3), 255–262. https://doi.org/10.1007/s12594-020-1423-2

References

Agrawal, S., Verma, P., Rao, M. R., Garg, R., Kapur, V. V., and Bajpai, S. (2017) Lignite deposits of the Kutch Basin, western India: Carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2. Jour. Asian Earth Sci., v.146, pp.296-303.

Andersson, R. A., Kuhry, P., Meyers, P., Zebühr, Y., Crill, P. and Mörth, M. (2011) Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic. Org. Geochem., v.42, pp. 1065-1075.

Bai, Y., Fang, X., Nie, J., Wang, Y. and Wu, F. (2009) A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers. Palaeogeog.,Palaeoclimato., Palaeoecol., v.271, pp.161-169.

Bai, Y., Fang, X.M., Nie, J.S., Wang, Y.L., and Wu, F.L. (2006) Distribution of aliphatic ketones in Chinese soils: potential environmental implications. Org. Geochem., v.37, pp. 860-869.

Baker, A., Routh, J., and Roychoudhury, A.N. (2016) Biomarker records of palaeoenvironmental variations in subtropical Southern Africa since the late Pleistocene: Evidences from a coastal peatland. Palaeogeog., Palaeoclimato., Palaeoecol., v.451, pp.1-12.

Bhowmick, P.K. (2008) Phanerozoic petroliferous basin of India. Glimpses of Geoscience research in India, pp.253-268.

Bingham, E.M., McClymont, E.L.,Väliranta, M.,Mauquoy, D., Roberts, Z., Chambers, F.M., Pancost, R.D. and Evershed. R. P. (2010) Conservative composition of n-alkane biomarkers in Sphagnum species: Implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Org. Geochem., v.41, pp.214-220.

Biswas, S.K. (2012) Status of petroleum exploration in India. Proc. Ind. Natn. Sci. Acad., v.78, pp.475-494.

Boom, A., Marchant, R., Hooghiemstra, H., Sinninghe and Damste, J.S. (2002) CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2. Palaeogeog., Palaeoclimato., Palaeoecol., v.177, pp.151-168.

Bourbonniere, R.A., and Meyers, P.A. (1996) Sedimentary geolipid records of historical changes in the watersheds and productivities of Lake Ontario and Erie. Limnol. Oceanogr., v.41, pp.352-359.

Bray, E.E., and Evans, E.D., (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta, v.22, pp.2-15.

Bush, R. T.,andMcInerney, F. A. (2015) Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA. Org. Geochem., v.79, pp.65-73.

Bush, R.T., and McInerney, F.A. (2013) Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta, v.117, pp.161-179.

Castañeda, I. S., Werne, J. P., Johnson, T. C., and Filley, T. R. (2009) Late Quaternary vegetation history of southeast Africa: the molecular isotopic record from Lake Malawi. Palaeogeogr. Palaeocl. v.275, 100-112.

Chao, L., Ping'an, P., Guoying, S., and Jiamo, F. (2000) Precambrian organic matter. Chinese Sci. Bull., v.45, pp.295-303.

Compton. P.M. (2009) The geology of the Barmer Basin, Rajasthan, India, and the origins ofits major oil reservoir, the Fatehgarh Formation. Petrol. Geosci., v.15, pp.117-130.

Cranwell, P.A., (1973) Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Fresh. Biol., v.3, pp.259-265.

Cranwell, P.A., Eglinton, G., and Robinson, N., (1987) Lipids of aquatic organisms as potential contributors to lacustrine sediments 2. Org. Geochem., v.11, pp.513-527.

Dasgupta, S.P., Kumar V. and Ramachandra, J. (1988) A framework of the Nagaur-Ganganagarevaporite basin, Rajasthan/ Indian Minerals, v.42(1), pp.57-64.

Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., and Eglinton, G., (1978) Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, v.272, pp.216-222.

Duan, Y., Zheng, C.Y., Wu, B.X. (2010)Hydrogen isotopic characteristics and their genetic relationships for individual n-alkanes in plants and sediments from Zoigíª marsh sedimentary environment. Sci. China Ser. D-Earth Sci., v.53, pp.1329-1334.

Dutta, K.K. (1971) Lignite deposit of Palana, Coal Resources of India. Mem. Geol., Surv India, v.88, pp.426-428.

Dutta, S., Tripathi, S.K.M., Mallick, M., Mathews, R.P., Greenwood, P.F., Rao, M.R., and Summons, R.E. (2011) Eocene-out-of-India dispersal of Asian dipterocarps. Rev. Palaeobot. Palynol., v.166, pp.63-68.

Eglinton, G., and Hamilton, R.J. (1967) Leaf epicuticular waxes. Science, v.156, pp.1322-1334.

Eglinton, G., Logan, G. A., Ambler, R.P., Boon, J.J. and Perizonius, W. R.K. (1991) Molecular preservation [and discussion]. Philosophical Transactions of the Royal Society of London. Series B: Biolog. Sci., v.333(1268), pp.315-328.

Ficken, K.J., Li, B., Swain, D.L. and Eglinton, G. (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem., v.31, pp.745-749.

Gagosian, R.B., and Peltzer, E.T., (1986) The importance of atmospheric input of terrestrial material to deep sea sediments. Org. Geochem., v.10, pp.661- 669.

Gombos,A. M., Powell, W. G., and Norton, I.O. (1995) The tectonic evolution of western India and its impact on hydrocarbon occurrences: an overview. Sediment. Geol., v.96, pp.119-129.

Heron, A.M. (1935) Synopsis of Pre. Vindhyan geology of Rajputana. Trans. Nat. Inst. Sci. India, v.1(2), pp.17-33.

Jensen, E.S. (1991) Evaluation of automated analysis of 15N and total N in plant material and soil. Plant and Soil, v.133, pp.83-92.

Jodha, B.S. (2009) Report on Search for Lignite by Scout Drilling in Borana East area, Palana Basin, Bikaner and Jaisalmer Districts, Rajasthan, Geological Survey of India, Government of India.

La Touche, T.D.H. (1902) Geology of western Rajputana. Mem. Geol. Surv. India, v.35, pp.116.

Li, Y., Yang, S., Wang, X., Hu, J., Cui, L., Huang, X., and Jiang, W. (2016) Leaf wax n-alkane distributions in Chinese loess since the Last Glacial Maximum and implications for paleoclimate. Quaternary Internat., v.399, pp.190-197.

Mathews, R.P., Singh, B.D., and Singh, V.P., (2018) Evaluation of organic matter, hydrocarbon source, and depositional environment of onshore Warkalli sedimentary sequence from Kerala-Konkan Basin, south India. Jour. Geol. Soc. India, v. 92(4), pp.407-418.

McKirdy, D.M.,and Hahn, J.H. (1982) Composition of Kerogen and Hydrocarbons in Precambrian Rocks. In: Holland H.D., Schidlowski M. (eds) Mineral Deposits and the Evolution of the Biosphere. Dahlem Workshop Report, vol. 3. Springer, Berlin, Heidelberg.

Meyers, P.A. (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org. Geochem., v.34, pp.261-289.

Naafs, B.D.A., Inglis, G.N., Blewett, J., McClymont, E.L., Lauretano, V., Xie, S., Evershed, R.P. and Pancost, R.D. (2019) The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review, Global and Planetary Change, v.179, pp.57-79.

Pareek, H.S. (1984) Pre-quaternary geology and mineral resources of north-western Rajasthan. Mem. Geol. Soc. India, v.115, p.99.

Paul, S., Sharma, J., Singh, B.D., Saraswati, P.K., and Dutta, S., (2015) Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India. Internat. Jour. Coal Geol. v.149, pp.77-92.

Peters, K.E., and Moldowan, J.M. (1993) The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments (Vol. 363). Englewood Cliffs, NJ: Prentice Hall.

Peters, K.E., Walters, C.C., and Moldowan, J.M. (2005) The Biomarker Guide. Cambridge University, New York, p.1132.

Philp, P.R. and Lewis, C.A. (1987) Organic Geochemistry of Biomarkers. Ann. Rev. Earth Planet. Sci., v.15, pp.363-395.

Prasad, B., Asher, R., and Borgohai, B., (2010) Late Neoproterozoic (ediacaran)-early Paleozoic (Cambrian) achritarchs from the MarwarSupergroup, Bikaner-Nagaur Basin, Rajasthan. Jour. Geol. Soc. India, v.75, pp.415-431.

Prasad, R.B.N. and Gülz, P.G. (1990) Developmental and seasonal variations in the epicuticular waxes of beech leaves (Fagus sylvatica): ZeitschriftfürNaturforschung, v.45c, pp.805-812.

Raju, S.V., Mathur N. and Sarmah, M.K. (2014) Geochemical characterization of Neoproterozoic heavy oil from Rajasthan, India: implications for future exploration of hydrocarbons. Curr. Sci., v.107, pp.1298-1305.

Randlett, M.-E., A. Bechtel, M.T.J. van der Meer, F. Peterse, T. Litt, N. Pickarski, O. Kwiecien, M. Stockhecke, B. Wehrli, and Schubert, C.J. (2017) Biomarkers in Lake Van sediments reveal dry conditions in eastern Anatolia during 110.000-10.000 years B.P., Geochem. Geophys. Geosyst., v.18, pp.571-583.

Rieley, G., Collier, R.J., Jones, D.M., Eglinton, G., Eakin, P.A., and Fallick, A.E., (1991) Sources of sedimentary lipids deduced from stable carbonisotope analyses of individual compounds. Nature, v.352, pp. 425-427.

Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y., and Rullkötter, J. (2006) Chemotaxonomic significance of distribution and stable isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes. Org. Geochem., v.37, pp.1303-1332.

Sachse, D., Radke, J., and Gleixner, G., (2006) δD values of individual nalkanes from terrestrial plants along a climatic gradient-implications for the sedimentary biomarker record. Org. Geochem., v.37, pp.469-483.

Saraswati, P.K., Khanolkar, S., Raju, D.S.N., Dutta, S., Banerjee, S., and Liu, Y.W.M., (2014) Foraminiferal biostratigraphy of lignite mines of Kutch India: Age of lignite fossil vertebrates. Jour. Palaeogeog., v.3(1), pp.9098.

Schefuβ, E., Ratmeyer, V., Stuut, J.B.W., Jansen, J.H.F., and SinningheDamsté, J.S. (2003) Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochim. Cosmochim. Acta, v.67, pp.1757-1767.

Schellekens, J. and Buurman, P. (2011) n-alkane distributions as palaeoclimatic proxies in ombrotrophic peat: The role of decomposition and dominant vegetation. Geoderma, v.164, pp.112-121.

Seki, O., Harada, N., Sato, M., Kawamura, K., Ijiri, A., and Nakatsuka, T. (2012) Assessment for paleoclimatic utility of terrestrial biomarker records in the Okhotsk Sea sediments. Deep-Sea ResearchII, v.61-64, pp.85-92.

Sethi, M.L. (1951) Mineral Resources of Rajasthan, Bull, Department of Mines and Geology, Government of India, No. 4.

Sikes, E.L., Uhle, M.E., Nodder, S.D., and Howard, M.E. (2009) Sources of organic matter in a coastal marine environment: Evidence from n-alkanes and their ä13C distributions in the Hauraki Gulf, New Zealand. Mar. Chem., v.113, pp.149-163.

Silliman, J.E., Meyers, P.A., and Bourbonniere, R.A. (1996) Record of postglacial organic matter delivery and burial in sediments of Lake Ontario. Org. Geochem., v.24, pp.463-472.

Singh, A., Mahesh, S., Mathews, R.P., Singh, B.D., Singh, H., Singh, V.P., and Dutta, S., (2017c) Paleoenvironment of Eocene lignite bearing succession from Bikaner-Nagaur Basin, western India: Organic petrography, palynology, palynofacies and Geochemistry. Int. Jour. Coal Geol., v.181, pp.87-102.

Singh, H., Prasad, M., Kumar, K. and Singh, S. K., (2015) Early Eocene macroflora and associated palynofossils from the Cambay Shale Formation, western India: Phytogeographic and palaeoclimatic implications. Palaeoworld, v.24, pp.293-323.

Singh, P.K.,Rajak, P.K., Singh, V.K., Singh, M.P. Naik, A.S., Raju, S. V.,(2016) Studies on thermal maturity and hydrocarbon potential of lignites of Bikaner-Nagaur basin, Rajasthan. Energy Explor. Exploit., v.34(1), pp.140-157.

Singh, V.P., Singh, B.D., Mathews, R.P., Singh, A., Mendhe, V.A., Singh, P.K., Misra, S., Dutta S., Mahesh, S., and Singh, M.P., (2017b) Investigation on the lignite deposits of Surkha mine (Saurashtra Basin, Gujarat), western India: Their depositional history and hydrocarbon generation potential. Int. Jour. Coal Geol., v.183, pp. 78-99.

Singh, V.P., Singh, B.D., Singh, A., Singh, M.P., Mathews, R.P., Dutta, S., Mendhe, V.A., Mahesh, S, and Mishra, S. (2017a) Depositional palaeoenvironment and economic potential of Khadsaliya lignite deposits (Saurashtra Basin), western India: Based on petrographic, palynofacies and geochemical characteristics. Int. Jour. Coal Geol., v.171, pp. 223-242.

Smith, F.A., Wing, S.L and Freeman, K.H., (2007) Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change. Earth Planet. Sci. Lett., v.262, pp.50-65.

Stebner, F., Szadziewski, R., Singh, H., Gunkel, S., and Rust, J. (2017) Biting midges (Diptera: Ceratopogonidae) from Cambay amber indicate that the Eocene fauna of the Indian subcontinent was not isolated. PLoS ONE, v.12(1), e0169144.

Tripathi, S.K.M., Kumar, M., and Srivastava, D., (2009) Palynology of Lower Palaeogene (Thanetian-Ypresian) coastal deposits from the Barmer Basin (Akli Formation, Western Rajasthan, India): Palaeoenvironmental and palaeoclimatic implications. Geol. Acta, v.7, pp.147-160.

Vogts, A., Moossen, H., Rommerskirchen, F., and Rullöktter, Jr., (2009) Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rainforest and savanna C3 species. Org. Geochem., v.40, pp.1037-1054.

Wang, M., Zhang W., and Hou, J. (2015) Is average chain length of plant lipids a potential proxy for vegetation, environment and climate changes? Biogeosciences Discuss., v.12, pp.5477-5501.

Wang, N., Zong, Y., Brodie, C.R., and Zheng, Z.,(2014) An examination of the fidelity of n-alkanes as a palaeoclimate proxy from sediments of PalaeolakeTianyang, South China. Quaternary Internat., v.333, pp.100109.

Wang, Y.L., Fang, X.M., Bai, Y., Xi, X.X., Zhang, X.Z., and Wang, Y.X. (2007) Distribution of lipids in modern soils from various regions with continuous climate. Sci. China Ser. D: Earth Sci., v.50, pp.600-612.

Xie, S., Guo, J., Huang, J., Chen, F., Wang, H., and Farrimond, P., (2004) Restricted utility of ä13C of bulk organic matter as a record of paleovegetation in some loesse paleosol sequences in the Chinese Loess Plateau. Quarternary Res., v.62, pp.86-93.

Yamamoto, S., Kawamura, K., Seki, O., Meyers, P.A., Zheng, Y., and Zhou, W., (2010) Environmental influences over the last 16 ka on compoundspecific ä13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China. Chem. Geol., v.277, pp. 261-268.

Zeng, F., Xiang, S., Zhang, K., and Lu, Y., (2011) Environmental evolution recorded by lipid biomarkers from the Tawanloessepaleosol sequences on the west Chinese Loess Plateau during the late Pleistocene. Environ. Earth Sci., v.64, pp.1951-1963.

Zhang, Y., Su,Y., Liu, Z., Yu, J., and Jin, M.,(2017) Lipid biomarker evidence for determining the origin and distribution of organic matter in surface sediments of Lake Taihu, Eastern China. Ecolog. Indic., v.77, pp.397-408.

Zheng, Y.H., Zhou, W.J., Meyers, P.A., and Xie, S.C., (2007) Lipid biomarkers in the ZoigíªHongyuan peat deposit: indicators of Holocene climate changes in West China.Org. Geochem., v.38, pp.1927-1940.

Zhou, W., Zheng, Y., Meyers, P.A., Jull, A.J.T., and Xie, S., (2010) Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, northeastern China. Earth Planet. Sci. Lett., v.294, pp.37-46.

Zhou, W.J., Xie, S.C., Meyers, P.A., and Zheng, Y.H., (2005) Reconstruction of late-glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Org. Geochem., v.36, pp.1272-1284.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 > >>