Burial History and Hydrocarbon Potential of the Harudi and Fulra Limestone of Kachchh, Western India Constrained using Carbonate Clumped Isotope Thermometry

Authors

  • Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee - 247 667
  • Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee - 247 667
  • Geoscience Division, Physical Research Laboratory, Ahmedabad - 380 009
  • Research Center for Environmental Changes, Academia Sinica
  • Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee - 247 667
  • Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj - 370 001

Keywords:

No Keywords

Abstract

The clumped isotope paleothermometry is used to estimate minimum burial depth of the mid Eocene Harudi and Fulra Limestone Formations of Kachchh, western India. The Nummulites and other fossil foraminiferal genera were separated for conventional (δ18O, δ13C) and clumped isotopic (Δ47) measurements. The measurements were also made on whole rock (WR) to visualize the different phases of diagenetic alteration, expected depth of burial and capacity to generate hydrocarbon. The measured δ18O and δ13C values of WR samples vary between -3.09 and -2.21‰ and -0.78 and 0.96‰ respectively, with average values of -2.88‰ and 0.16‰. The δ18O and δ13C values of benthic foraminifera vary between -3.52 and -3.20‰ (Average: -3.35±0.013) and -1.04 and 0.81‰ (Average: 0.26±0.76) respectively. The measured Δ47 for the foraminifera translates to temperature of 35 and 49oC and between 26 and 48oC for WR indicating minor diagenetic alteration. The minimum estimates for the burial depth of the studied formations are up to 2 km which is based on the temperature difference between the ecological preference temperature of benthic foraminifera and the diagenetically altered foraminifera and δ13C of WR and foraminifera, indicating that rocks have potential to generate methane.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-01-01

How to Cite

Kumar, R., Maurya, A. S., Laskar, A. H., Liang, M.-C., Sharma, R., & Bhandari, S. (2024). Burial History and Hydrocarbon Potential of the Harudi and Fulra Limestone of Kachchh, Western India Constrained using Carbonate Clumped Isotope Thermometry. Journal of Geological Society of India, 100(1), 91–98. Retrieved from http://www.geosocindia.com/index.php/jgsi/article/view/172986

References

Affek, H.P., Bar-Matthews, M., Ayalon, A., Matthews, A. and Eiler, J.M. (2008) Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by “clumped isotope” thermometry. Geochim.t Cosmochim. Acta, v.72, pp.5351–5360.

Barker, C.E. and Pawlewicz, M.J. (1986) The correlation of vitrinite reflectance with maximum temperature in humic organic matter. Paleogeothermics. Springer, pp.79–93.

Banerjee, S., Chattoraj, S. L., Saraswati, P. K., Dasgupta, S. and Sarkar, U. (2012) Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India. Marine Petrol. Geol., v.30, pp.144-160.

Beckner, J.R. and Mozley, P.S. (1998) Origin and spatial distribution of early vadose and phreatic calcite cements in the Zia Formation, Albuquerque Basin, New Mexico, USA. In: Morad, S. (Ed.), Carbonate Cementation in Sandstone. Blackwell Science, pp.1–26.

Biswas, S. (1992) Tertiary stratigraphy of Kutch. Jour. Palaeontol. Soc. India, v.37, pp.1–29.

Brand, U. and Veizer, J. (1981). Chemical diagenesis of a multi component carbonate system-2: stable isotopes. Jour. Sediment. Petrol., v.51, pp.987– 997.

Choquette, P.W. and Pray, L.C. (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates: AAPG Bull., v.54, pp.207-244.

Coplen T. B. (2007) Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta, v.71, pp.3948–3957

Cummins, R.C., Finnegan, S., Fike, D.A., Eiler, J.M. and Fischer W.W. (2014) Carbonate clumped isotope constraints on Silurian Ocean temperature and seawater ä18O. Geochim. Cosmochim. Acta, v.140, pp.241-258.

Czerniakowski, L.A., Lohmann, K.C., and Wilson, J. (1984) Closed-system marine burial diagenesis: Isotopic data from the Austin Chalk and its components: Sedimentol., v.31, pp.863–877, doi: 10.1111/j.1365-3091.1984.tb00892.x.

Dale, A., John, C.M., Mozley, P.S., Smalley, P.C. and Muggeridge, A.H. (2014). Time-capsule concretions: unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. Earth Planet. Sci. Lett., v.394, pp.30–37.

Dennis, K.J., Affek, H.P., Passey, B.H., Schrag, D.P. and Eiler J. M. (2011) Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochim. Cosmochim. Acta, v.75, pp.7117–7131.

Eagle, R.A., Risi, C., Mitchell, J.L., Eiler, J.M., Seibt, U., Neelin, J.D., Li, G. and Tripati, A.K. (2013) High regional climate sensitivity over continental China constrained by glacial recent changes in temperature and the hydrological cycle. Proc Nat. Acad. Sci., v.110, pp.8813–8818.

Eiler, J.M. and Schauble, E., (2004) 18O 13C 16O in Earth’s atmosphere. Geochim. Cosmochim. Acta, v.68, pp.4767–4777.

Eiler, J.M. (2011). Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Sci. Rev., v.30, pp.3575–3588.

Farley, K.A. (2002) (U–Th)/He dating: techniques, calibrations, and applications. Rev. Mineral. Geochem., v.47, pp.819–844.

Fan, M., Hough, B.G. and Passey, B.H. (2014) Middle to late Cenozoic cooling and high topography in the central Rocky Mountains: constraints from clumped isotope geochemistry. Earth Planet. Sci. Lett., v.408, pp.35–47.

Garzione, C.N., Dettman, D.L. and Horton, B.K. (2004) Carbonate oxygen isotope paleoal-timetry: evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan Plateau. Palaeogeo. Palaeoclimat. Palaeoecol., v.212, pp.119–140

Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo,W., Schauble, E.A., Schrag, D. and Eiler, J.M. (2006a) 13C-18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta, v.70, pp.1439–1456.

Ghosh, P., Garzione, C.N. and Eiler, J.M. (2006b) Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, v.311, pp.511–515.

Gleadow, A.J.W., Duddy, I.R., Green, P.F.and Lovering, J.F. (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib. Mineral. Petrol., v.94, pp.405–415.

Goldstein, R.H. (2001) Fluid inclusions in sedimentary and diagenetic systems. Lithos, v.55, pp.159-193.

Green, P.F., Crowhurst, P.V. and Duddy, I.R. (2004) Integration of AFTA and (U–Th)/He thermochronology to enhance the resolution and precision of thermal history reconstruction in the Anglesea-1 well, Otway Basin, SE Australia. Eastern Australian Basins Symposium II. Petroleum Exploration Society of Australia, Special Publication. Petroleum Exploration Society of Australia, West Perth, pp. 117–131.

Hardas, M.G. and Biswas, S.K. (1973) Paleogene sedimentation from south western Kutch, Gujarat. Bull. ONGC, v.10(1-2), pp.47-54.

Henkes, G.A., Passey, B.H., Grossman, E.L., Shenton, B.J., Pérez-Huerta, A. and Yancey, T.E. (2014) Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochim. Cosmochim. Acta, v.139, pp.362-382, doi:10.1016/j.gca.2014.04.040.

Huntington, K.W., Eiler, J.M., Affek, H.P., Guo, W., Bonifacie, M., Yeung, L.Y., Thiagarajan, N., Passe, B., Tripati, A. and Daeron, M., Came, R. (2009) Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas source isotope ratio mass spectrometry. Jour. Mass Spectro., v.44(9), pp.1318–1329.

Huntington, K.W., Wernicke, B.P. and Eiler, J.M. (2010) Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics, v.29, TC3005. doi:10.1029/2009TC002449.

Huntington, K.W., Saylor, J., Quade, J. and Hudson, A.M. (2014) High Late Miocene–Pliocene elevation of the Zhada basin, SW Tibetan plateau, from clumped isotope thermometry. Geol. Soc. Amer. Bull., B31000-1. doi:10.1130/B31000.1.

Huntington, K.W. and Lechler, A.R. (2015). Carbonate clumped isotope thermometry in continental tectonics. Tectonophysics, v.647-648, pp.1-20.

Irwin H., Charles, C. and Coleman, M. (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, v.269(5625), oo,209-213.

Khanolkar, S., Saraswati P.K. and Rogers K. (2017) Ecology of foraminifera during the middle Eocene climatic optimum in Kutch, India, Geodinamica Acta, v.29(2), pp1-13, doi: 10.1080/09853111.2017.1300846

Kim, S.-T. and O’Neil, J.R. (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta, v.61, pp.3461–3475.

Kim, S.-T., O’Neil, J.R., Hillaire-Marcel, C. and Mucci, A. (2007) Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature andMg2+ concentration. Geochem. et Cosmochem. Acta, v.71, pp.4704–4715

Langer, M. and Hottinger, L. (2000) Biogeography of selected “larger” foraminifera. Micropaleontol., v.46, pp.105–127.

Laskar A.H., Yui, T.F., Liang, M.C. (2016a) Clumped isotope composition of marbles from the Backbone Range of Taiwan, Terra Nova, v.28, pp.265–270

Laskar, A.H., Mahata, S., Liang, M.C. (2016b) Identification of Anthropogenic CO2 Using Triple Oxygen and Clumped Isotopes. Environ. Sci. Tech., v.50, pp.11806-11814.

Lohmann, K.C. (1988) Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst, Paleokarst, Springer New York, pp.58-80.

MacDonald, J., John, C. anf Girard, J-P. (2014) Dolomitization processes in hydrocarbon reservoirs: insight from geothermometry using clumped isotopes. Procedia Earth Planet. Sci., v.13, pp.265-268.

Morad, S. (1998) Carbonate cementation in sandstones: distribution patterns and geochemical evolution. In: Morad, S. (Ed.), Carbonate Cementation in Sandstone, Blackwell Science, pp.1–26.

Passey, B.H., Levin, N.E., Cerling, T.E., Brown, F.H. andEiler, J.M. (2010) High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc. Nat. Acad. Sci., USA, v.107, pp.11245–11249.

Passey, B.H., and Henkes, G.A. (2012) Carbonate clumped isotope bond reordering and geospeedometry: Earth Planet. Sci. Lett., v.351–352, pp.223–236, doi:10.1016/j.epsl.2012.07.021.

Pearson, P.N., Ditchfield, P., Singano, J., Harcourt-Brown, K., Nicholas, C., Olsson, R., Shackleton, N.J., and Hall, M.A. (2001) Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, v.413, pp.481–487.

Quade, J., Eiler, J., Daeron, M., and Achyuthan, H. (2013). The clumped isotope geothermometer in soil and paleosol carbonate: Geochim. Cosmochim. Acta, v.105, pp.92–107, doi:10.1016/j.gca.2012.11.031.

Richards, I.J., Connelly, J.B., Gregory, R.T. and Gray, D.R. (2005) The impor- tance of diffusion, advection, and host-rock lithology on vein formation: a stable isotope study from the Paleozoic Ouachita orogenic belt Arkansas and Oklahoma. Geol. Soc. Amer. Bull., v.114(11), pp.1343–1355.

Saraswati, P., Ramesh, R. and Navada, S. (1993) Palaeogene isotopic temperatures of western India. Lethaia, v.26, pp.89-98.

Saraswati, P., Khanolkar, S., Raju, D., Dutta, S. and Banerjee, S., (2014). Foraminiferal biostratigraphy of lignite mines of Kutch, India: Age of lignite and fossil vertebrates. Jour. Palaeogeo., v.3, pp.90-98.

Saraswati, P., Khanolkar, S., Raju, D.S.N. and Banerjee, S. (2016) An Updated Eocene Stratigraphy of Kutch. Geol. Soc. India Spec. Publ., no.6, pp.25-31.

Schauble, E.A., Ghosh, P. and Eiler, J.M. (2006) Preferential formation of C13–O18 bonds in carbonate minerals, estimated using first principles lattice dynamics. Geochim. Cosmochim. Acta, v.70(10), pp.2510-2529.

Sena, C.M. and John, C.M. (2013) Impact of dynamic sedimentation on facies heterogeneities in Lower Cretaceous peritidal deposits of central east Oman. Sedimentol., v.60, pp.1156–1183, doi:10.1111/sed.12026.

Sharma, J. and Saraswati, P. (2015) Lignites of Kutch, western India: Dinoflagellate biostratigraphy and palaeoclimate. Revue de Micro-paléontologie, v.58, pp.107-119.

Sharp, Z.D. and Kirschner, D.L. (1994) Quartz-calcite oxygen isotope thermometry: a calibration based on natural isotopic variations. Geochim. Cosmochim. Acta, v.58, pp.4491–4501.

Singh, P. and Singh, M.P. (1991) Nannofloral biostratigraphy of the late middle Eocene strata of Kachchh region, Gujarat State, India. Geosci. Jour., v.12, pp.17–51.

Srivastava, V. K., Singh, B. P., Dutt S. and Aggarwal, A. (2022) First record of sulfate driven anaerobic methane oxidation and associated dolomite precipitation in Kachchh Basin, western India. Carbonates and Evaporites, v.37(12), doi:10.1007/s13146-022-00761-w

Urey, H.C. (1947) The thermodynamic properties of isotopic substances. Jour. Chem. Soc., pp.562–581.

Wang, Z., Schauble, E.A. and Eiler, J.M. (2004) Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochem. Cosmochem. Acta, v.68, pp.4779–4797.

Winkelstern, I.Z. and Lohmann, K.C. (2016) Shallow burial alteration of dolomite and limestone clumped isotope Geochemistry. Geology, v.44(6), pp.467–470. doi:10.1130/G37809.

Wolf, G., Lerchner, J., Schmidt, H., Gamsjäger, H., Königsberger, E. and Schmidt, P., (1996) Thermodynamics of CaCO3 phase transitions. Jour. Thermal Analysis and Calorimetry, v.46, pp.353–359.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)