Chrome-diopside Xenocrysts Entrained in a Neoproterozoic Lamprophyre Dyke from the Mysuru Area: Their Origin and Implications for Lithospheric Thickness Beneath the Western Dharwar Craton, Southern India

Authors

  • Department of Geology, Institute of Science, Banaras Hindu University, Varanasi-221005
  • Department of Geology, Institute of Science, Banaras Hindu University, Varanasi-221005
  • Geological Survey of India, Bengaluru - 560 111
  • Physical Research Laboratory, Ahmedabad - 380 009
  • Department of Geology, Institute of Science, Banaras Hindu University, Varanasi-221005

DOI:

https://doi.org/10.1007/s12594-022-1923-3

Keywords:

No Keywords

Abstract

In comparison to the eastern Dharwar Craton, the mantlederived xenocrysts/xenoliths are extremely rare or even unreported from the western Dharwar Craton, southern India. A Neoproterozoic (ca. 800-900 Ma) lamprophyre cropping out in the Mysuru area of southern India contains chrome-diopside xenocrysts (Cr2O3 content varying from 0.2 – 1.23 wt%) which provide important evidence about the pressure-temperature conditions and lithospheric thickness beneath the western Dharwar Craton. Studied chrome-diopsides show compositional zoning which is lacking in the liquidus phases (amphiboles and feldspars) of the lamprophyre which additionally favors a non-cognate origin of the former. Based on the compositional zoning, all the chromediopside xenocrysts can be divided into three groups: (i) Group Iwhich are euhedral and show reverse zoning with increasing Cr-content from core to rim; (ii) Group II- which are characterized by fractures and resorption textures, show complex reverse zoning and display up to three distinct compositional layers, and (iii) Group III- which evidence the reaction of chrome-diopsides with lamprophyric melt and are marked by alteration phases, such as actinolite and chlorite, together with relicts of some unaltered xenocrysts. High Cr2O3, moderate MgO and low Al2O3 content of all the three varieties of chrome-diopside suggest them to represent disaggregated xenocrysts of mantle-derived garnet peridotite. Temperature-pressure estimates for chrome-diopside xenocrysts ranges from 895 - 1026 ºC (± 30 ºC) and 32 – 38 kbar respectively and correspond to depth range of 106 – 127 km. The study reveals that lithospheric thickness during the Neoproterozoic beneath the western Dharwar craton was at least ∼115 km and is similar in composition to that of the cratonic lithosphere found in the other cratonic domains.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Original Articles

Published

2022-01-31

How to Cite

Raghuvanshi, S., Chalapathi Rao, N. V., Talukdar, D., Sharma, A., & Pandey, R. (2022). Chrome-diopside Xenocrysts Entrained in a Neoproterozoic Lamprophyre Dyke from the Mysuru Area: Their Origin and Implications for Lithospheric Thickness Beneath the Western Dharwar Craton, Southern India. Journal of Geological Society of India, 98(1), 23–34. https://doi.org/10.1007/s12594-022-1923-3

References

Ashchepkov, I.V., Kuligin, S.S., Vladykin, N.V., Downes, H., Vavilov, M.A., Nigmatulina, E.N., Babushkina, S.A., Tychkov, N.S. and Khmelnikova, O.S. (2016). Comparison of mantle lithosphere beneath early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts. Geosci. Front., v.7(4), pp.639-662. doi:10.1016/j.gsf.2015. 06.004

Aulbach, S. (2018) Cratonic Lithosphere Discontinuities, in Lithospheric Discontinuities, Amer. Geophy. Union, pp.177-203.

Azeez, K.K.A., Veeraswamy, K.,A., Gupta, K., Babu, N., Chandrapuri, S. and Harinarayana, T. (2015) The electrical resistivity structure of lithosphere across the Dharwar craton nucleus and Coorg block of South Indian shield: Evidence of collision and modified and preserved lithosphere. Jour. Geophys. Res.: Solid Earth, v.120, pp.6698–6721.

Barnes, S.J.(1986) The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure. Geochim. Cosmochim. Acta., v.50, pp.1889-1909.

Barnes, S.J., Piña, R. and Vaillant, M. Le.(2018) Textural development in sulfide-matrix ore breccias in the Aguablanca Ni-Cu deposit, Spain, revealed by X-ray fluorescence microscopy. Ore Geol. Rev., v.95, pp.849- 862.

Bleeker, W. (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos, v.71, pp.99-134.

Bussweiler, Y., Pearson, D.G., Stachel, T. and Kjasgaard B.A. (2018) Cr-rich megacrysts of clinopyroxene and garnet from Lac de Gras kimberlites, Slave Craton, Canada – implications for the origin of clinopyroxene and garnet in cratonic lherzolites. Mineral. Petrol., v.112, pp.583–596. doi:10.1007/s00710-018-0599-2

Campbell, I.H. and Borley, G.D. (1974) The geochemistry of pyroxenes from the lower layered series of the Jimberlana intrusion, Western Australia. Contrib. Mineral. Petrol., v.47, pp.281–297. doi:10.1007/BF00390151

Chalapathi Rao, N.V. and Lehmann, B. (2011) Kimberlites, flood basalts and mantle plumes: New insights from the Deccan Large Igneous Province. Earth-Sci. Rev., v.107(3-4), pp.315-324. doi.:10.1016/j.earscirev. 2011.04.003

Chalapathi Rao, N.V., Lehmann, B., Belousova, E., Frei, D. and Mainkar, D. (2013) Petrology, bulk-rock geochemistry, indicator mineral composition, and zircon U–Pb geochronology of the end-Cretaceous diamondiferous Manipur orangeites, Bastar Craton, Central India. In: Pearson, D.G.,

Grütter, H.S., Harris, J.W., Kjarsgaard, B.A., O’brien, H., Rao, N.V.C. and Sparks, S. (Eds.), 16 Proceedings of the 10th International Kimberlite Conference. Jour. Geol. Soc. India Spec. Issue, v.1, pp.93–121.

Chalapathi Rao, N.V., Giri, R.K., Sharma, A. and Pandey, A. (2020) Lamprophyres from the Indian shield: A review of their occurrence, petrology, tectonomagmatic significance and relationship with the Kimberlites and related rocks. Episodes Jour. Int. Geosci., v.43(1), pp.231- 248. doi:10.18814/epiiugs/2020/020014

Chang-Ming Xing and Christina Yan Wang. (2020) Periodic mixing of magmas recorded by oscillatory zoning of the clinopyroxene macrocrysts from an ultrapotassic lamprophyre dyke. Jour. Petrol., v.61, pp.11-12.

Dal Negro, A., Carbonin, S., Molin, GM., Cundari, A., Piccirillo, E. M. (1982) Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional, and alkaline basaltic rocks. In: Saxena S.K. (Eds.), Advances in Physical Geochemistry. Adv. Phy. Geochem. Springer, New York., v.2, pp.117-150. doi:10.1007/978-1-4612-5683-0_3

Dessai, A. G., Viegas, A. and Griffin, W. L. (2020) Thermal architecture of cratonic India and implications for decratonization of the Western Dharwar craton; implications for decratonization of the Western Dharwar craton; Evidence from mantle xenoliths in the Deccan Traps. Lithos, v.382, pp.105927. doi:10.1016/j.lithos.2020.105927

Dessai, A.G. and Griffin, W.L. (2021) Decratonization and reactivation of the southern Indian shield: An integrated perspective. Earth-Sci. Rev., v.220, pp.103702. doi:10.1016/j.earscirev.2021.103702.

Devaraju, T.C., Laajoki, K., Makkonen, H., Khandali, S.D., Ugarkar, A.G. and Jamkhindi, M.S. R. (1995) Neo-proterozoic Dyke swarms of Southern Karnataka. Part I: Field characters, petrography and mineralogy. Mem. Geol. Soc. India, no.33, pp.209–265.

Devaraju, T., Kaukonen, R., Sudhakara, T., Alapieti, T. (2006) Tremolite- Olivine-Phlogopite-Bearing Ultramafic Enclaves in The Archaean Migmatite Gneiss near Naregal, Gadag District, Karnataka. Jour. Geol. Soc. India, v.67(3), pp.312-316.

Dobosi, G. and Fodor, R.V. (1992) Magma fractionation, replenishment, and mixing as inferred from green-core clinopyroxenes in Pliocene basanite, southern Slovakia. Lithos, v.28, pp.133-150. doi:10.1016/ S0024- 4937(98)00093-0

Dongre, A., Chalapathi Rao, N.V., Viljoen, K.S. and Lehmann, B. (2017) Petrology, genesis and geodynamic implication of the Mesoproterozoiclate Cretaceous Timmasamudram kimberlite cluster, Wajrakarur field, Eastern Dharwar craton, Southern India. Geosci. Front., v.8, pp.541– 553. doi:10.1016/j.gsf.2016.05.00

Dongre, A.N., Jacob, D.E. and Stern, R.A.(2015) Subduction-related origin of eclogite xenoliths from the Wajrakarurkimberlite field, Eastern Dharwar craton, Southern India: Constraints from petrology and geochemistry. Geochim. Cosmochim. Acta., v.166, pp.165-188. 17

Ganguly, J. and Bhattacharya, P.K. (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In: P.H.

Nixon (Ed.), Mantle Xenoliths. John Wiley and Sons Ltd., pp.249–265. Geological Survey of India (1992) District Resource map of Mysore district, Karnakata.

Ginibre, C., Kronz, A. and Wörner, G. (2002) High resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning. Contrib. Mineral. Petrol., v.142, pp.436-448.

Govindarajulu, B.V. and Shariff, A. (1966) A calciferous hornblende from amphibolite of Kushalnagar, Coorg state. Proc. Indian Acad. Sci., v.63, pp.361-370. https://www.ias.ac.in/article/fulltext/seca/063/06/0361-0370

Griffin, W.L., Kobussen, A.F., Babu, E.V.S.S.K., O'Reilly, S.Y., Norris, R. and Sengupta, P. (2009) A translithospheric suture in the vanished 1-Ga lithospheric root of South India: evidence from contrasting lithosphere sections in the Dharwar Craton. Lithos, v.112, pp.1109-1119. doi:10.1016/ j.lithos.2009.05.015.

Grütter, H.S. (2009) Pyroxene xenocryst geotherms: Techniques and application. Lithos, v.112, pp.1167-1178. doi:10.1016/j.lithos.2009.03. 023.

Guruhappa, H., Srivastava, K., Srinagesh, D. and Vijay Kumar, T. (2019) Stochastic Modeling of the Thermal Structure to Decipher the Lithospheric Thickness: Application to Dharwar Craton. Pure Appl. Geophys.,v.176, pp.203–214. doi:10.1007/s00024-018-1963-1

Haggerty, S.E. (1995) A diamond trilogy: superplumes, supercontinents, and supernovae. Science., v.285, pp.851– 860. doi:10.1126/science.285.5429. 851

Jayananda, M., Gireesh, R.V., Sekhamo, K.U. and Miyazaki, T. (2014) Coeval felsic and mafic magmas in neoarchean calc-alkaline magmatic arcs, Dharwar craton, southern India: field and petrographic evidence from mafic to hybrid magmatic enclaves and synplutonic mafic dykes. Jour. Geol. Soc. India, v.84(1), pp.5-28.

Jayananda, M., Santosh, M. and Aadhiseshan, K.R. (2018) Formation of Archean (3600– 2500 Ma) continental crust in the Dharwar Craton, southern India. Earth-Sci. Rev., v.181, pp.12– 42. doi:10.1016/ j.earscirev.2018.03.013

Karmalkar, N.R., Duraiswami R.A., Chalapathi Rao, N.V., Paul, D.K. (2009) Mantle-derived mafic-ultramafic xenoliths and nature of Indian subcontinental lithosphere. Jour. Geol. Soc. India, v.73, pp.657-679. doi:10.1007/s12594-009-0051-7

Karmalkar, N.R., Griffin, W.L. and O’Reilly, S.Y. (2000) Ultramafic xenoliths from Kutch, North west India: Plume related mantle samples? Int. Geol. Rev., v.42, pp.416-444. doi: 10.1080/00206810009465090

Kopylova, M.G., Nowell, G.M., Pearson, D.G. and Markovic, G. (2009) Crystallization evidence from high-Cr megacrysts from protokimberlitic fluids: Geochemical evidence from high-Cr megacrysts in the Jericho Kimberlite. Lithos, v.112S, pp.264-295.

Kosarev, G.L., Oreshin S.I., Vinnik L.P., Kiselev S.G., Dattatrayam, R.S., Suresh, G. and Baidya, P.R. (2013) Heterogeneous lithosphere and the underlying mantle of the Indian lithosphere. Tectonophysics, v.592, pp.175–186. doi:10.1016/j. tecto.2013.02.023

Kukkonen, I.T., Kinnunen, K.A.,Peltonen, P.(2003) Mantle xenoliths and thick lithosphere in the Fennoscandian Shield. Phys. Chem. Earth, Parts A/B/ C. v.28(9-11), pp.349-360. doi:10.1016/S1474-7065(03)00057-3

Kumar, A., Talukdar, D., Chalapathi Rao, N.V., Burgess, R. and Lehmann, B. (2021) Mesoproterozoic 40Ar–39Ar ages of some lamproites from the Cuddapah Basin and Eastern Dharwar Craton, southern India: implications for diamond provenance of the Banganapalle Conglomerates, age of the Kurnool Group and Columbia tectonics. In: Krmícek, L. and Chalapathi Rao, NV (Eds.), Lamprophyres, Lamproites and Related Rocks: Tracers to Super continent Cycles and Metallogenesis. Jour. Geol. Soc. London Spec. Publ., v.513. doi:10.1144/SP513-2020-247

Kumar, N., Zeyen, H. and Singh, A.P. (2014) 3D lithosphere density structure of southern Indian shield from joint inversion of gravity, geoid and topography data. Jour. Asian Earth Sci., v.89, pp.98–107. doi:10.1016/ j.jseaes.2014.03.028

Kumar, P., Ravi Kumar, M., Srijayanthi, G., Arora, K., Srinagesh, D., Chadha, R.K. and Sen, M.K. (2013) Imaging the lithosphere- asthenosphere boundary of the Indian plate using converted wave techniques. Jour. Geophys. Res.: Solid Earth, v.118, pp.1-13. doi:10.1002/jgrb.50366

Kumar, P., Yuan, X., Ravi Kumar, M., Kind, R., Li, X. and Chadha, R.K. (2007) The rapid drift of the Indian tectonic plate. Nature, v.449, pp.894- 897. doi:10.1038/nature06214

Lanjewar, S. and Randive, K. (2018) Lamprophyres from the Harohalli dyke swarm in the Halaguru and Mysore areas, Southern India: Implications for backarc basin magmatism. Jour. Asian Earth Sci., v.157, pp.329-347. doi:10.1016/j.jseaes.2017.11.031

Lee, C.T.A. and Chin, E.J. (2014) Calculating melting temperature and pressures of peridotitesprotoliths: implications for the origin of cratonic mantle. Earth Planet. Sci. Lett., v.403, pp.273-286.

Lenardic, A., Moresi, L., and Muhlhaus, H. (2000), The role of mobile belts for the longevity of deep cratonic lithosphere: The crumple zone model. Geophy. Res. Lett., v.27(8), pp.1235-1238. doi:10.1029/1999gl008410.19

Manikyamba, C. and Kerrich, R. (2012) Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes. Geosci. Front., v.3(3), pp.225-240.

Masotta, M., Pontesilli, A., Mollo, S., Armienti, P., Ubide, T., Nazzari, M. and Scarlato P. (2020) The role of undercooling during clinopyroxene growth in trachybasaltic magmas: Insights on magma decompression and cooling at Mt. Etna volcano. Geochim. Cosmochim. Acta., v.268, pp.258-276. doi:10.1016/j.gca.2019.10.009

Maurya, S., Montagner, J.P., Kumar, M. R., Stutzmann, E., Kiselev, S., Burgos, G., Rao, N.P. and Srinagesh, D. (2016) Imaging the lithospheric structure beneath the Indian continent. Jour. Geophys. Res.: Solid Earth, v.121, pp.7450–7468. doi:10.1002/2016JB012948.

Mitra, S., Priestley, K., Gaur, V.K. and Rai, S.S. (2006) Shear-wave structure of the south Indian lithosphere from Rayleigh wave phase-velocity measurements. Bull. Seismol. Soc. Amer., v.96, pp.1551-1559. doi:10.1785/0120050116

Mollo, S., Del Gaudio, P., Ventura, G., Iezzi, G. and Scarlato P. (2010) Dependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometry. Lithos, v.118, pp.302-312. doi:10.1016/j.lithos.2010.05.006

Naganjaneyulu, K. and Santosh, M. (2012)The nature and thickness of lithosphere beneath the Archean Dharwar Craton, southern India: a magnetotelluric model. Jour. Asian Earth Sci., v.49, pp.349– 361. doi:10.1016/j.jseaes.2011.07.002

Nehru, C.E. and Reddy, A.K. (1989) Ultramafic xenoliths from Vajrakarur kimberlites, India. Jour. Geol. Soc. Aust. Spec. Publ., v.14, pp.745-758. Nimis, P. (1998) Evaluation of diamond potential from the composition of peridotitic chromian diopside. European Jour. Mineral., pp.505-520. doi:10.1127/ejm/10/3/0505

Nimis, P. and Taylor, W.R. (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol., v.139(5), pp.541-554. doi:10.1007/s004100000156

Nixon, P.H. (1987). Mantle xenoliths. John Wiley, Chichester, New York, Brisbane, Toronto, Singapore, 844p.

O'Reilly, S.Y. and Griffin, W.L. (1988) Mantle metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites. Geochim. Cosmochim. Acta, v.52(2), pp.433-447.

Pandey, O.P. and Agrawal, P.K. (1999) Lithosphere mantle deformation beneath the Indian Cratons. Jour. Geol., v.107, pp.683-692.

Pandey, A. and Chalapathi Rao, N.V. (2020) Supercontinent transition as a trigger for ~1.1 Gyr diamondiferous kimberlites and related magmatism in India. Lithos., v.370-371, 105620. doi:10.1016/j.lithos.2020.105620

Pandey, O.P. (2016) Deep scientific drilling results from Koyna and Killari earthquake regions reveal why Indian shield lithosphere is unusual, thin and warm. Geosci. Front., v.7, pp.851-858.

Pandey, R., Chalapathi Rao, N.V., Pandit, D., Sahoo, S. and Dhote, P. (2017) Imprints of modal metasomatism in the post-Deccan subcontinental lithospheric mantle: petrological evidence from an ultramafic xenolith in an Eocene lamprophyre, NW India. Jour. Geol. Soc. London Spec. Publ., v.463, pp.117-136. doi:10.1144/SP463.6

Patel, S.C., Ravi, S., Anilkumar, Y., Naik, A., Thakur, S.S., Pati, J.K. and Nayak, S.S. (2009) Mafic xenoliths in Proterozoic kimberlites from Eastern Dharwar Craton, India: mineralogy and P-T regime. Jour. Asian Earth Sci., v.34(3), pp.336-346.

Patel, S.C., Ravi, S., Thakur, S.S., Rao, T.K. and Subbarao, K.V., (2006) Eclogite xenoliths from Wajrakarur kimberlites, southern India. Mineral. Petrol., v.88(1-2), pp.363-380.

Pattnaik J., Ghosh S. and Dongre A. (2020) Plume activity and carbonated silicate melt metasomatism in Dharwar cratonic lithosphere: Evidence from peridotite xenoliths in Wajrakarur kimberlites. Lithos, v.376-377, 105726.

Pearson, D.G., Canil, D.G., Shirey, S.B. (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Holland, H.D. and Turekian, K.K. (Eds.), Treatise on Geochemistry. Amsterdam, Elsevier, pp.171–275.

Pearson, D.G. and Wittig, N. (2014) The Formation and Evolution of Cratonic Mantle Lithosphere-evidence from Mantle Xenoliths. In: Heinrich D. Holland, and Karl K. Turekian (Eds.), Treatise on Geochemistry. Elsevier, pp.255-292.

Peng, Z.X. and Mahoney, J.J. (1955) Drillhole lavas from the northwestern Deccan Traps and the evolution of Reunion hotspot mantle. Earth. Planet. Sci. Lett., v.134, pp.169-185.

Pontesilli A., Masotta M., Nazzari M., Mollo S., Armienti P., Scarlato P. and Brenna M. (2019) Crystallization kinetics of clinopyroxene and titanomagnetite growing from a trachybasaltic melt: New insights from isothermal time-series experiments. Chem. Geol.,v.510, pp.113- 129. doi:10.1016/j.chemgeo.2019.02.015

Pivin, M., Féménias, O. and Demaiffe, D. (2009) Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts. Lithos, v.112S, pp.951-960. doi:10.1016/j.lithos.2009.03.050

Ramakrishnan, M. and Vaidyanadhan, R. (2008) Geology of India, vol.1, Geological Society of India, Banglore.

Rama Rao, J., Kumar, B.R., Balakrishna, B. and Veeraiah, B. (2021) Tectonic divisions and accretionary model within Dharwar Craton: New insights from gravity surveys on status of Chitradurga Schist Belt. Jour. Earth Syst. Sci., v.130(3), pp.1-21. doi:10.1007/s12040-021-01621-2

Ramsay, P.R. (1992) Geochemistry of diamond indicator minerals; Unpublished PhD thesis, University of Western Australia., pp.246.

Ramsay, R.R. and Tompkins, L.A. (1994) The geology, heavy mineral concentrate mineralogy, and diamond prospectivity of the Boa Esperanca and Cana Verde pipes, Corrego D'anta, Minas Gerais, Brasil. In: Fifth International Kimberlite Conference, Minas Gerais, Brazil (Vol. 1B, pp. 329-345). Companhia de Pesquisa de Recursos Minerais, Special Publication.

Rock, N.M.S. (1991) Lamprophyres. Glasgow: Blackie, 65p.

Saha, G.K., Prakasam, K.S. and Rai, S.S. (2020) Diversity in the peninsular Indian lithosphere revealed from ambient noise and earthquake tomography. Phys. Earth Planet. Inter., v.306, 106523. doi: 10.1016/ j.pepi.2020.106523

Sarma, D.S., Parashuramulu, V., Santosh, M.,Nagaraju, E. and Ramesh Babu, N. (2020) Pb–Pb baddeleyite ages of mafic dyke swarms from the Dharwar Craton: Implications for Paleoproterozoic LIPs and diamond potential of mantle keel. Geosci. Front., v.11, pp.2127– 2139. doi:10.1016/ j.gsf.2020.05.014.

Sebastian, S., Bhutani, R., Balakrishnan, S., Tomson, J.K. and Shukla, A.D. (2021) Geochemical and isotopic studies of potassic granite from the western Dharwar Craton, southern India: Implications for crustal reworking in the Neoarchean. Geol. Jour., v.56(6), pp.2930-2949. doi:10.1002/ gj.4085

Sharma, A., Kumar, D., Sahoo, S., Pandit, D. and Chalapathi Rao, N.V. (2018) Chrome-diopside Megacryst-bearing Lamprophyre from the Late Cretaceous Mundwara Alkaline Complex, NW India: Petrological and Geodynamic Implications. Jour. Geol. Soc. India, v.91, pp.395-399. doi:10.1007/s12594-018-0871-4

Sharma, A., Sahoo, S., Rao, N.C., Belyatsky, B., Dhote, P. and Lehmann, B., (2021) Petrology and Nd-Sr isotopic composition of alkaline lamprophyres from the Early to Late Cretaceous Mundwara alkaline complex, NW India: evidence of crystal fractionation, accumulation and corrosion in a complex magma chamber plumbing system. In: Krmícek, L. and Chalapathi Rao, NV (Eds.), Lamprophyres, Lamproites and Related Rocks: Tracers to Supercontinent Cycles and Metallogenesis. Geol. Soc. London, Spec. Publ., no.513. doi:10.1144/SP513-2020-175

Shaikh, A.M., Patel, S.C., Ravi, S., Behera, D. and Pruseth, K.L. (2017) Mineralogy of the TK1 and TK4 kimberlites in the Timmasamudram cluster, Wajrakarur Kimberlite field, India: implications for lamproite Magmatism in the field of Kimberlite and ultramafic lamprophyres. Chem. Geol., v.455, pp.208-230. doi:10.1016/j.chemgeo.2016.10.030

Simonetti, A., Shore, M. and Bell, K. (1996) Diopside phenocrysts from nephelinite lavas, Napak Volcano, eastern Uganda; evidence for magma mixing. Canadian Mineral., v.34(2), pp.411–421.

Singh, A. P., Mercier, J.P., Ravi Kumar, M., Srinagesh, D. and Chadha, R.K. (2014) Continental scale body wave tomography of India: Evidence for attrition and preservation of lithospheric roots. Geochem. Geophys. Geosyst., v.15(3), pp.658-675. doi:10.1002/2013GC005056

Sudholz, Z.J., Yaxley G.M., Jaques, A.L. and Brey, G.P. (2021) Experimental recalibration of the Cr-in-clinopyroxene geobarometer: improved precision and reliability above 4.5 GPa. Contrib. Mineral. Petrol., v.176, pp.11. doi:10.1007/s00410-020-01768-z.

Sugavanam, E. B., Mallikharjuna, C. and Vidhyadharan, K.T. (1994) Archean meta lamprophyres from Nuggihalli schist belt, Hassan district-Karnataka. Jour. Geol. Soc. India, v.35, pp.125-46.

Swami Nath, J. and Ramakrishnan, M. (1981) Early Precambrian supracrustals of southern Karnataka. Mem. Geol. Surv. India., v.112, pp.1–350.

Talukdar, D., Pandey, A., Chalapathi Rao, N.V., Kumar, A., Pandit, D., Belyatsky, B. and Lehmann, B. (2018) Petrology and geochemistry of the Mesoproterozoic Vattikod lamproites, Eastern Dharwar Craton, southern India: Evidence for multiple enrichment of sub–continental lithospheric mantle and links with amalgamation and break–up of the Columbia supercontinent. Contrib. Mineral. Petrol., v.173, pp.67. doi:10.1007/ s00410-018-1493-y

Ubide, T., Galé, C., Arranz, E., Lago, M. and Larrea, P. (2014) Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): a record of magma history and a window to mineral-melt partitioning. Lithos., v.184-187, pp.225-242. doi:10.1016/j.lithos.2013.10.029

Vasanthi, A. and Santosh, M. (2021) Lithospheric architecture and geodynamics of the Archean Dharwar craton and surrounding terranes: New insights from satellite gravity investigation. Gondwana. Res.,v.95, pp.14-28. doi:10.1016/j.gr.2021.03.008

Veeraswamy, K. and Raval, U. (2005) Remobilization of the palaeoconvergent corridors hidden under the Deccan trap cover and some major stable continental region earthquakes. Curr. Sci., v.89(3), pp.522-530.

Ya-Dong Liu and Ji-Feng Ying (2020) Origin of clinopyroxene megacrysts in volcanic rocks from the North China Craton: a comparison study with megacrysts worldwide. Int. Geol. Rev., v.62(15), pp.1845-1861. doi:10.1080/00206814.2019.1663766

Zhang, H.F., Ying, J.F., Shimoda, G., Kita, N.T., Morishita, Y., Shao, J.A. and Tang, Y.J. (2007) Importance of melt circulation and crust-mantle interaction in the lithospheric evolution beneath the North China Craton: Evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths. Lithos., v.96(1-2), pp.67-89. doi:10.1016/ j.lithos.2006.10.002.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>