Modeling of Source Parameters of the 15 December 2015 Deogarh Earthquake of M<sub>w</sub> 4.0

Authors

  • CSIR- National Geophysical Research Institute, Uppal Road, Hyderabad – 500 007
  • CSIR- National Geophysical Research Institute, Uppal Road, Hyderabad – 500 007
  • CSIR- National Geophysical Research Institute, Uppal Road, Hyderabad – 500 007
  • CSIR- National Geophysical Research Institute, Uppal Road, Hyderabad – 500 007

DOI:

https://doi.org/10.1007/s12594-017-0616-9

Abstract

We herein present source parameters and focal mechanism of a rare cratonic upper crustal earthquake of Mw4.0, which occurred at 8 km depth (centroid depth) below a region near Deogarh, Jharkhand. For our study, we used broadband waveform data from a seismic network of 15 three-component seismographs in the eastern Indian craton. The average seismic moment, moment magnitude and source radius are estimated to be 1.1 x 1015 N-m, 4.0 and 180.6 m, respectively. The high average stress drop of 14.27 MPa could be attributed to its lower-crustal origin. The mean corner frequency is calculated to be 4.1 Hz. To study the source mechanism, we perform a deviatoric constrained full waveform moment tensor inversion of multiple point sources on the bandpassed (0.06 - 0.14 Hz) broadband displacement data of the Deogarh event, using ISOLA software. The best fit is obtained for the source at 8 km centroid depth, with a moment magnitude 3.7, and a right-lateral strike-slip mechanism with strike 162°, dip 72° and rake 169°. The P-axis orients N24°E, which is parallel to the direction of the absolute plate motion direction of Indian plate, while T-axis orients E-W, which is parallel to the strike of the pre-existing Damodar Graben (DG) of Gondwana age. The occurrence of this earthquake is attributed to the neotectonic reactivation of a fault associated with the E-W trending DG shear zone.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2017-04-01

How to Cite

Mandal, P., Singh, B., Nagendra, P., & Gupta, A. K. (2017). Modeling of Source Parameters of the 15 December 2015 Deogarh Earthquake of M<sub>w</sub> 4.0. Journal of Geological Society of India, 89(4), 363–368. https://doi.org/10.1007/s12594-017-0616-9

References

Berteusen, K.A. (1977) Moho depth determinations based on spectral ratio analysis of NORSAR long-period P waves. Phys. of Earth and Planet Int., v.31, pp.313-326.

Bilham, R. (1999) Slip parameters for the Rann of Kachchh, India, 16 June 1819 earthquake quantified from contemporary accounts. In: Stewart, I.S., Vita-Finzi, C. (Eds.), Coastal Tectonics, 146. Geol. Soc. London, pp. 295–318.

Boatwright, J. (1980) A spectral theory for circular seismic sources: simple estimates of source dimension, dynamic stress drop and radiated energy. Bull. Seism. Soc. Amer., v.70, pp. 1-27.

Bouchon, M. (1981) A simple method to calculate Green's functions for elastic layered media. Bull. Seismol. Soc. Amer., v.71, pp. 959–971.

Brune, J. N. (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. Jour. Geophys. Res., v.75, pp. 4997–5009.

Burgmann, P.J., Gaur, V.K., Bilham, R., Larson, K.N., Ananda, M.B., Jade, S., Mukul, M., Anupama, T.S., Satyal, G. and Kumar, D. (2001) The motion and active deformation of India. Geophys. Res. Lett., v.28 (4), pp.28–32.

Byerlee, J. (1978) Friction of rocks. Pure Appld. Geophys., v.116, pp.615-626.

Chandra, U. (1977) Earthquakes of Peninsular India - a seismotectonic study. Bull. Seismol. Soc. Amer., v.67(5), pp.1387-1413.

Cloetingh, S.A.P.L. and Wortel, M.J.R. (1986) Stresses in the Indo-Australian plate. Tectonophysics, v.132, pp.49–67.

Coblentz, D.D., Zhou, S., Hillis, R.H., Richardson, R.M. and Sandiford, M. (1998) Topography, boundary forces, and the Indo-Australian intraplate stress field. Jour. Geophys. Res., v.103, pp.919–931.

Coutant, O. (1989) Program of numerical simulation AXITRA; Research Report, Laboratoire de Ge´ophysique Interne et Tectonophysique, Grenoble.

DeMets, C., Gordon, R.G., Argus, D.F. and Stein, S. (1990) Current plate motions. Geophys. Jour. Internat., v.101, pp.425–478

Dimri, V.P. (1992) Deconvolution and Inverse Theory: Application to Geophysical Problems. Elsevier Science Publishers, Amsterdam, 230p.

Fletcher, J.B. (1995) Source parameters and crustal Q for four earthquakes in South Carolina, Seismol. Res. Lett., v.66, pp.44–58.

Gupta, S., Mohanty, W. K., Mandal, A. and Misra, S. (2014) Ancient terrane boundaries as probable seismic hazards: A case study from the northern boundary of the Eastern Ghats Belt, India. Geoscience Frontiers, v.5, pp.17-24.

Havskov, J. and Ottemoller, L. (2003) SEISAN: the earthquake analysis software manual, p. 203.

Kayal, J.R., Srivastava, V.K., Bhattacharya, S.N., Khan, P.K. and Chatterjee, R. (2009) Source Parameters and Focal Mechanisms of Local Earthquakes: Single Broadband Observatory at ISM Dhanbad. Jour. Geol. Soc. India, v.74, pp.413-419.

Keilis-Borok, V. I. (1959) An estimation of the displacement in earthquake source and of source dimensions. Ann. Geophys., v.12, pp.205–214.

Kennett, B. L. N. and Engdahl, E.R. (1991) Travel times for global earthquake location and phase identification. Geophys. Jour. Internat., v.105, pp.429– 465, doi 10.1111/j.1365-246X.1991.tb06724.x.

Khan, P.K., Biswas, B., Samdarshi, P. and Prasad, R. (2011) Seismicity and the coda-Q variation in eastern Indian shield region. Indian Jour. Geosci., v.65(2), pp.43–50.

Mandal, P. and Dutta, U. (2011) Estimation of earthquake source parameters and site response. Bull. Seismol. Soc. Amer., v.101(4), pp.1719–1731.

Madriaga, R. (1976) Dynamics of an expanding circular fault. Bull. Seismol. Soc. Amer., v.66, pp.639–666.

Morrow, C., Radney, B. and Byerlee, J. D. (1992) Frictional strength and the effective pressure law of montmorillonite and illite clays: fault mechanics and transport properties of rocks; In Fault Mechanics and Transport Properties of Rocks. ed. Evans B and Wong T F San Diego, California: Academic Press, pp.69–88.

Oldham, T. (1883) A catalogue of Indian earthquakes from the earliest times to the end of 1869 A.D.. Mem. Geol. Surv. India., v.XIX, Part. 3.

Paul, J., Burgmann, R., Gaur, V.K., Bilham, R., Larson, K.M., Ananda, M.B., Jade, S., Mukul, M., Anupama, T.S., Satyal, G. and Kumar, D. (2001) The motion and active deformation of India. Geophys. Res. Lett., v.28, pp.647– 651.

Press, W. H. et al. (1992) Numerical recipes in FORTRAN and C. Academic Press New York, pp.382.

Seismic Analysis Code (SAC2000) (2000) (http://www.iris.edu/manuals/sac/ SAC_Home_Main.html)280.

Sibson, R.H. (1984) Roughness at the base of the seismogenic zone: contributing factors. Jour. Geophys. Res., v.89, pp.5791-5799.

Singh, S. K., Garcí½´a, D., Pacheco, J. F., Valenzuela, R., Bansal, B. K. and Dattatrayam, R. S. (2004) Q of the Indian Shield. Bull. Seismol. Soc. Amer., v.94(4), pp.1564–1570.

Sokos, E.N. and Zahradní­k, J. (2008) ISOLA a FORTRAN code and a MATLAB GUI to perform multiple-point source inversion of seismic data; Comput. Geosci., v.34, pp.967–977.

Sokos, E.N. and Zahradní­k, J. (2013) Evaluating Centroid-Moment-Tensor uncertainty in the new version of ISOLA software. Seismol. Res. Lett., v.84(4), pp.656-665.

Zahradnik, J., Serpetsidaki, A., Sokos, E. and Tselentis, G. A. (2005) Iterative deconvolution of regional waveforms and a double-event interpretation of the 2003 Lefkada Earthquake, Greece. Bull. Seismol. Soc. Amer., v.95(1), pp.159–172.

Most read articles by the same author(s)

1 2 > >>