Gravity and Magnetic Survey in Southwestern Part of Cuddapah Basin, India and its Implication for Shallow Crustal Architecture and Mineralization

Authors

  • Geological Survey of India, Hyderabad - 500 068
  • Geological Survey of India, Hyderabad - 500 068
  • Geological Survey of India, Hyderabad - 500 068
  • Geological Survey of India, Hyderabad - 500 068
  • Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines), Dhanbad – 826 004
  • Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines), Dhanbad – 826 004

DOI:

https://doi.org/10.1007/s12594-019-1196-7

Keywords:

No keywords

Abstract

Gravity and magnetic surveys were carried out in southwestern part of Cuddapah basin (CB) covering an area of ~3660 km2. Southwestern part of CB gained lot of attention after discovery of second most important uranium province in India. Some nonmetallic industrial minerals and base metal occurrence are also reported in the study area. Present study with high spatial resolution gravity-magnetic survey aims to decipher detail basin geometry, nature of sediments , along with possible mineral deposits in SW part of CB. The gravity survey comprising short and long wavelength anomalies brought out sedimentary characteristics and basement architecture underneath the sediments. The long wavelength features of the gravity map shows gneissic basement, which is characterized by both basic and acid magmatic intrusive. Residual gravity anomaly map shows good correspondence with the exposed high density basaltic rock units and also brought out occurrence of concealed high density litho-units, which have significance for mineral prospecting. The magnetic map shows that both sediments and underneath basement are non-magnetic in nature except SW part of the study area, where study suggests occurrence of concealed mafic lensoid body. Euler solutions and combined gravity-magnetic modelling further facilitated for understanding of structural feature and basement geometry. Based on the integrated gravity and magnetic study mineral prospecting zones have been delineated for further detailed study.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2019-04-01

How to Cite

Ganguli, S. S., Singh, S., Das, N., Maurya, D., Pal, S. K., & Rama Rao, J. V. (2019). Gravity and Magnetic Survey in Southwestern Part of Cuddapah Basin, India and its Implication for Shallow Crustal Architecture and Mineralization. Journal of Geological Society of India, 93(4), 419–430. https://doi.org/10.1007/s12594-019-1196-7

References

Anand, M., Gibson, S.A., Subbarao, K.V., Keelly, S.P. and Dickin, A.P. (2003) Early Proterozoic Melt Generation Process Beneath The IntraCratonic Cuddapah Basin, Southern India. Jour. Petro., v.44(12), pp.21392171.

Barton, P.J. (1986) The relationship between seismic velocity and density in the continental crust”a useful constraint? Geophys. Jour. Internat., v.87(1), pp.195-208.

Båth, B.M. (2012) Spectral analysis in geophysics. Elsevier.

Biswas, A., Mandal, A., Sharma, S.P. and Mohanty, W.K. (2014) Delineation of subsurface structures using self-potential, gravity, and resistivity surveys from South Purulia Shear Zone, India: Implication to uranium mineralization. Interpretation, v.2(2), T103-T110.

Blakely, R.J. (1996) Potential theory in Gravity and Magnetic applications.Cambridge University Press, 464p.

Bryan, S. E. and Ernst, R. (2008) Revised definition of large igneous provinces (LIPs). Earth Sci. Rev., v.86(1), pp.175-202.

Chakraborti, S. and Saha, D. (2009) Tectonic stresses and thin-skinned tectonics in a Proterozoic fold-and-thrust belt read from calcite mylonites in the Cuddapah basin, south India. Indian Jour. Geol., v.78, pp.37–54.

Chandrakala, K., Mall, D.M., Sarkar, D. and Pandey, O.P. (2013) Seismic imaging of the Proterozoic Cuddapah basin, South India and regional geodynamics. Precambrian Res., v.213, pp.277-289.

Chetty, T. R. (2011) Tectonics of Proterozoic Cuddapah basin, southern India: A conceptual model. Jour. Geol. Soc. India, v.78, pp.446–456.

Deb, M. and Pal, T. (2015) Mineral potential of Proterozoic intracratonic basins in India. Geol. Soc. London, Mem., v.43(1), pp.309-325.

Dobmeier, C., Lutke, S., Hammerschmidt, H. and Mezger, K. (2006) Emplacement and deformation of the Vinukonda granite – implications for the geological evolution of peninsular India and for Rodinia reconstructions. Precambrian Res., v.146 , pp.165–178.

Dobrin, M.B. and Savit, C.H. (1988) Introduction to geophysical prospecting. McGraw-Hill Book Company, ISBN 0-07-100404-1 .

Geological Survey of India (2012) 1:50000 unpublished geological map of Toposheet No 57J/11.

GSI-NGRI. (2006) Gravity Anomaly Map of India on 1:2 Million Scale.

Geological Survey of India, Hyderabad and National Geophysical Research Institute, Hyderabad, India, Maps, 1–13p.

Gupta, J.N., Pandey, B.K., Chabria, T., Banerjee, D.C. and Jayaram, K.M. (1984) Rb–Sr Geochronologic studies on the granites of Vinukonda and Kanigiri, Prakasam district, Andhra Pradesh, India. Precambrian Res., v.26 , pp.105–109.

Gupta, V.K. and Ramani, N. (1980) Some aspects of regional residual separation of gravity anomalies in a Precambrian terrain. Geophysics, v.45, pp.1412–1426.

Jacobsen, B.O. (1987) A case for upward continuation as a standard separation filter for potential-field maps. Geophysics, v.52, pp.1138–1148.

Kaila, K.L. and Bhatia, S.C. (1981) Gravity study along Kavali-Udipi deep seismic sounding profile in the Indian peninsular shield: some inferences about origin of anorthosites and Eastern Ghat orogeny. Tectonophysics, v.79(1-2), pp.129–143.

Kaila, K.L. and Tewari, H.C. (1985) Structural trends in the Cuddapah basin from deep seismic soundings (DSS) and their tectonicimplications. Tectonophysics, v.115(1-2), pp.69-86.

Kaila, K.L., Roy Chowdhury, K., Reddy, P.R., Krishna, V.G., Narain, H., Subbotin, S.I., et al. (1979) Crustal structure along Kavali–Udipi profile in the Indian peninsular shield from deep seismic sounding. Jour. Geol.Soc. India, v.20(7), pp.307–333.

Kailasam, L.N. (1976) Geophysical studies of the major sedimentary basins of the Indian craton, their deep structural features and evolution.Tectonophysics, pp.225-245.

Kesavamani, M., Rao, N.B. and Rama Rao, J.V. (1997) Characteristics of granite greenstone basement below the Cuddapahs: A geophysical insight.Jour. Geophys Union, v.VI, pp.27-29.

King, W. (1872) Kudapah and Karnul Formations in the Madras Presidency.Geol. Surv. India Mem., v.8(1), 346p.

Krishna Brahmam, N. (1989). Gravity and seismicity of the Cuddapah and basin and surrounding places. Jour. Geol. Soc. India, v.34(4), pp.373384.

Krishna Brahmam, N. and Dutt, N.V. (1992) A meteoritic impact theory for the initiation of the Cuddapah (Proterozoic) basin of India. Bull. Indian Geol. Assoc., v.25 , pp.43-60.

Krishna Brahmam, N., Sarma, J.R., Aravamadhu, P.S. and Subbarao, D.V. (1986) Explanatory brochure on Bouguer gravity anomaly map (NGRI/ GPH-6) of Cuddapah basin (India) with scale 1: 250,000, NGRI, Hyderabad. 36.

Kumar, U., Pal, S.K., Sahoo, S.D., Satya Narayan, Saurav, Mondal S. and Gunguli, S.S. (2018) Lineament mapping over Sir Creek offshore and its surroundings using high resolution EGM2008 Gravity data: An integrated derivative approach. Jour. Geol. Soc. India, v.91(6), pp.645-764.

Li, Xiong and G¨otze Hans-J¨urgen (2001) Ellipsoid, geoid, gravity, geodesy, and geophysics. Geophysics, v.66(6), pp.1660–1668

Lyngsie, S.B., Thybo, H. and Rasmussen, T.M. (2006) Regional geological and tectonic structures of the North Sea area from potential field modeling.Tectonophysics, v.413(3) , pp.147-170.

Mandal, A., Gupta, S., Mohanty, W. K. and Misra, S. (2015) Sub-surface structure of a craton–mobile belt interface: Evidence from geological and gravity studies across the Rengali Province–Eastern Ghats Belt boundary, eastern India. Tectonophysics, v.662, pp.140-152.

Manikyamba, C., Kerrich, R., Gonzalez-Alvarez, I., Mathur, R. and Khanna, T.C. (2008) Geochemistry of Paleoproterozoic black shales from the Intracontinental Cuddapah basin, India: implications for provenance, tectonic setting, and weathering intensity. Precambrian Res., v.162(3), pp.424-440.

Meijerink, A. M., Rao, D. P. and Rupke, J. (1984) Stratigraphic and structural development of the Precambrian Cuddapah basin, SE India. Precambrian Res., v.26(1), pp.5799101-97104.

Mishra, D. C. (2011) Gravity and Magnetic Methods for Geological Studies.Hyderabad: BS Publications, 938 p.

Mishra, D. C. and Kumar, M. R. (2014) Proterozoic orogenic belts and rifting of Indian cratons: geophysical constraints. Geoscience Frontiers, v.5(1), pp.25-41.

Murthy, Y. G. (1981) The Cuddapah basin: A review of Basin development and basement framework relations. In Fourth Workshop on ‘Status, Problems, and Programmes in Cuddapah Basin', Institute of India Peninsular Geology, Hyderabad, pp.51-72.

Naganjaneyulu, K. and Harinarayana, T. (2004) Deep Crustal Electrical Signatures of Eastern Dharwar Craton, India. Gondwana Res., v.7(4), pp.951-960.

Nagaraja Rao, B.K., Rajurkar, S.T., Ramalingaswamy, G. and Ravindra Babu, B. (1987) Stratigraphy, structure and evolution of the Cuddapah basin.Mem. Geol. Soc. India, v.6, pp.33-86.

Nasr, I.H., Amiri, A., Inoubli, M.H., Salem, A.B., Chaqui, A. and Tlig, S.(2011) Structural setting of northern Tunisia insights from gravity data analysis Jendouba case study. Pure Appld. Geophys., v.168(10), pp.18351849.

Oruç, B. and Keskinsezer, A. (2008). Structural setting of the northeastern Biga Peninsula (Turkey) from tilt derivatives of gravity gradient tensors and magnitude of horizontal gravity components. Pure Appld. Geophys., v.165(9), pp.1913-1927.

Pal, S. K. and Majumdar, T. J. (2015) Geological appraisal over the SinghbhumOrissa Craton, India using GOCE, EIGEN6-C2 and in-situ gravity data.Internat. Jour. Appld. Earth Observations and Geoinformation, v.35, pp.96119.

Pal, S.K., Satya Narayan, Majumdar, T.J., and Kumar, U. (2016a) Structural mapping over the 850E ridge and surroundings using EIGEN6C4 High Resolution Global Combined Gravity Field Model: an integrated approach.Marine Geophys. Res., v.37, pp.159-184.

Pal, S.K., Majumdar, T.J., Pathak, V.K., Satya Narayan, Kumar, U. and Goswami O.P. (2016b) Utilization of high resolution EGM2008 gravity data for geological exploration over the Singhbhum-Orissa Craton, India. Geocarto Internat., v.31(7), pp.783-802.

Pal, S.K., Vaish, J., Kumar, S., and Bharti, A. K. (2016c) Coalfire mapping of East Basuria Colliery, Jharia coal field using Vertical Derivative Technique of Magnetic data. Jour. Earth System Sci., v.125(1), pp.165178.

Pal, S. K., Vaish, J., Kumar, S., Priyam, P., Bharti, A. K. and Kumar R. (2017) Downward continuation and Tilt Derivative of magnetic data for delineation of concealed coal fire in East Basuria Colliery, Jharia coal field, India. Jour. Earth System Sci., v.126(53), pp.1-17.

Proakis, J.G. (2001) Digital signal processing: principles algorithms and applications. Pearson Education India.

Qureshy, M.N., Krishna Brahmam, N., Aravamadhu, P.S. and Naqvi, S.M.(1968) Role of Granitic intrusions in reducing the density of the crust, and other related problems as illustrated from a gravity study of the Cuddapah basin India. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, v.304(1479), pp.449-464.

Ram Babu, H.V. (1993) Basement structure of the Cuddapah Basin from gravity anomalies. Tectonophysics, v.223(3-4), pp.411-422.

Ramakrishnan, M. and Vaidyanadhan, R. (2008) Geology of India (Vol. 1), Geological Society of India, Bangalore, 556p.

Reid, A.B. and Thurston, J.B. (2014) The structural index in gravity and magnetic interpretation: Errors, uses, and abuses. Geophysics v.79(4), pp.J61-J66.

Reid, A.B., Allsop, J.M., Granser, H., Millett, A.T. and Somerton, I.W. (1990) Magnetic interpretation in three dimensions using Euler deconvolution.Geophysics, v.55(1) , pp.80-91.

Saha, D. and Mazumder, R. (2012) An overview of the Palaeoproterozoic geology of Peninsular India, and key stratigraphic and tectonic issues.Geol. Soc., London, Spec. Publ., v.365(1) , pp.5-29.

Saha, D. and Tripathy, V. (2012) Palaeoproterozoic sedimentation in the Cuddapah Basin, south India and regional tectonics: a review. Geol. Soc., London, Spec. Publ., v.365(1) , pp.161-184.

Satya Narayan, Sahoo, S.D., Pal, S.K., Kumar, U., Pathak, V.K., Majumdar, T.J. and Chouhan, A. (2016) Delineation of structural features over a part of the Bay of Bengal using total and balanced horizontal derivative techniques. Geocarto Internat., v.32(1), pp.1-16.

Sharma P.V. (1987) Magnetic method applied to mineral exploration. Ore Geology Rev., v.2(4), pp.323-357

Singh, A. P. and Mishra, D. C. (2002) Tectonosedimentary evolution of Cuddapah basin and Eastern Ghats mobile belt (India) as Proterozoic collision: gravity, seismic and geodynamic constraints. Jour, Geodyn,, v.33(3), pp.249-267.

Singh, A.P., Mishra, D.C., Gupta, S.B. and Rao, M.P. (2004) Crustal structure and domain tectonics of the Dharwar Craton (India): insight from new gravity data. Jour. Asian Earth Sci., v.23(1), pp.141-152.

Spector, A. and Grant, F.S. (1970) Statistical models for interpreting aeromagnetic data. Geophysics, v.35(2) , pp.293-302.

Tripathy, V. and Saha, D. (2013) Plate margin paleostress variations and intracontinental deformations in the evolution of the Cuddapah basin through Proterozoic. Precambrian Res., v.235, pp.107-130.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)