Underground Coal fire Mapping using Analysis of Self-Potential (SP) Data Collected from Akashkinaree Colliery, Jharia Coalfield, India

Authors

  • Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines), Dhanbad - 826 004
  • Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines), Dhanbad - 826 004

DOI:

https://doi.org/10.1007/s12594-020-1443-y

Keywords:

No Keywords.

Abstract

Sub-surface coal mine fires burn valuable resources and give rise to great threat in the local environs and people's health. Jharia coal field is one of utmost fire affected coal fields in India. This paper deals with the study of sub-surface coal fire using selfpotential (SP) method, a cost-effective and non-invasive passive geophysical technique. SP method in coal fire mapping works based on redox potential generated by oxidation of coal and also on Thomson potential due to temperature gradient. Initially, SP anomaly map generated using electrode drift corrected field data. The SP anomalies in the present study area vary from ∼95 to ∼-40mV. SP anomaly map has been continued to a height of 10m from the ground to remove the possible shallow surface noises. The upward continued anomaly map has been enhanced using first vertical derivative. Further, Euler's depth solutions have been estimated to understand possible geometry and source depth of sub-surface coal fires. The local geological map and field photograph corroborate well with the results for the characterization of coal seam fires.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2020-04-30

How to Cite

Kumar, S., & Pal, S. K. (2020). Underground Coal fire Mapping using Analysis of Self-Potential (SP) Data Collected from Akashkinaree Colliery, Jharia Coalfield, India. Journal of Geological Society of India, 95(4), 350–358. https://doi.org/10.1007/s12594-020-1443-y

References

Abdelrahman, E. M., Bayoumi, A. I., Abdelhady, Y. E., Gobashy, M. M., and El-Araby, H. M. (1989) Gravity interpretation using correlation factors between successive least-squares residual anomalies. Geophys., v.54(12),pp. 1614-1621. DOI: 10.1190/1.1442629

Agarwal, R., Singh, D., Chauhan, D. S. and Singh, K. P. (2006) Detection of coalmine fires in the Jharia coal field using NOAA/AVHRR data. Jour. Geophys. Engg., v.3, pp.212-218.

Agarwal, B. N. P. and Srivastava, S. (2009) Analyses of self-potential anomalies by conventional and extended Euler deconvolution techniques. Computer Geosci., v.35(11), pp.2231-2238.

Bharti, A.K., Pal, S.K. and Vaish, J. (2014) Application of Self-potential method for coal fire detection over Jharia Coal field. 51st Annual Convention of Indian Geophysical Union, Kurukshetra University, Kurukshetra, 19-21 November, pp.59-62.

Bharti, A.K., Pal, S.K., Priyam, P., Kumar, S., Shalivahan and Yadav, P. K. (2016) Subsurface cavity detection over Patherdih colliery, Jharia Coalfield, India using electrical resistivity tomography. Environ. Earth Sci., v.75(5) 443, pp.1-17. DOI: 10.1007/s12665-015-5025-z.

Bhattacharya, A., Reddy, S. and Mukherjee, T. (1991) Multi-tier remote sensing data analysis for coal fire mapping in Jharia coal field of Bihar, India; Asian Conference on Remote Sensing, Singapore, 30 October-5 November, v. 1, pp. 22-1-6.

Biswas, A. and Sharma, S. P. (2015) Interpretation of self-potential anomaly over idealized body and analysis of ambiguity using very fast simulated annealing global optimization. Near Surf Geophys. v.13(2), pp.179-195.

Biswas, A. and Sharma, S. P. (2016) Integrated geophysical studies to elicit the structure associated with Uranium mineralization around South Purulia Shear Zone, India: A Review. Ore Geol. Rev., v.72, pp.1307-1326. DOI: 10.1016/j.oregeorev.2014.12.015

Biswas, A. (2016) A comparative performance of Least Square method and Very Fast Simulated Annealing Global Optimization method for interpretation of Self-Potential anomaly over 2-D inclined sheet type structure. Jour. Geol. Soc. India, v.88, pp.493-502.

Biswas, A. (2017) A Review on Modeling, Inversion and Interpretation of Self-Potential in Mineral Exploration and Tracing Paleo-Shear Zones. Ore Geol. Rev., v.91, pp.21-56.

Blakely, R.J. (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge (UK).

Chandra, D. (1992) Jharia Coalfields. Geological Society of India, Bangalore.

Chatterjee, R. S. (2006) Coal fire mapping from satellite thermal IR data a case example in Jharia coalfield, Jharkand, India; ISPRS J. Photogramm.Remote Sens., v.60, pp.113-128.

CMPDIL (1988) Compendium on updated and revised geology of Jharia Coalfields, Ranchi, Jharkhand, India.

Corry, C.E. (1985). Spontaneous potential associated with porphyry sulphide mineralization. Geophysics, v.50, pp.1020-1034.

Corwin, R.F. and Hoover, D. B. (1979) The self-potential method in geothermal exploration. Geophysics, v.44, pp.226-245. DOI: 10.1190/1.1440964.

De Groot, S.R. (1951) Thermodynamics of irreversible processes, NorthHolland Publ. Co., Amsterdam, New York, pp.244.

Dorfman, M. H., Oskay, M. M. and Gaddis, M. P. (1977) Self-potential profiling. A new technique for determination of heat movement in thermal oil recovery field, Presented at the SPE Annual Fall Technical Conference and Exhibition: American Institute of Mining, Metallurgical, and Petroleum Engineers.

Fedi, M., and Pilkington, M. (2012) Understanding imaging methods for potential field data. Geophysics, v.77(1), pp. G13-G24, DOI: 10.1190/geo2011-0078.1.

Fedi, M. and Abbas, M. A. (2013) A fast interpretation of self-potential data using the depth from extreme points method. Geoph., v.78(2), pp.E107-E116.

Fitterman, D. V. and Corwin, R. F. (1982) Inversion of self-potential data from the Cerro Prieto geothermal field, Mexico: Geophys., v.47,pp.938- 945.

Ganguli,S.S., Singh,S., Das, N., Maurya, D., Pal, S.K. and Rama Rao, J. V. (2019) Gravity and magnetic survey in south western part of Cuddapah Basin, India and its implication for shallow crustal architecture and mineralization. Jour. Geol. Soc. India v.93(4), pp.419-430.

Ganguli, S. S., Pal, S.K., Rama Rao, J. V., and Sunder Raj, B. (2020). Gravity-magnetic appraisal at the interface of Cuddapah Basin and Nellore Schist Belt (NSB) for shallow crustal architecture and tectonic settings. Ms. No. JESS-D-18-00104R3. Jour. Earth Syst. Sci., DOI: 10.1007/s12040-0201354-8.

Hinze,W.J., I Von Frese, R. R. B., I Saad, A. H. (2013) Gravity and Magnetic Exploration: Principles, Practices, and Application, Cambridge University Press, pp.502. DOI: 10.1190/1.1441361.

Ikard, S. J., Revil, A., Jardani, A., Woodruff, W. F., Parekh, M. and Mooney, M.( 2012) Saline pulse test monitoring with the self-potential method to non-intrusively determine the velocity of the pore water in leaking areas of earth dams and embankments: Water Resources Res., v.48, W04201, DOI:10.1029/2010WR010247.

Jacobsen, B.H. (1987) A case for upward continuation as a standard separation filter for potential-field maps. Geophysics, v.52(8), pp.1138-1148.

Jardani, A., Dupont J.P. and Revil, A. (2006) Self-potential signals associated with pre-ferential groundwater flow pathways in sinkholes. Jour. Geophys. Res., v.111, B09204.

Karaoulis, M., Revil, A. and Mao, D. (2014) Localization of a coal seam fire using combined self-potential and resistivity data. Int. Jour. Coal Geol. v.128-129, pp.109-118.

Koumetio, F., Njomo, D., Noutchogwe, T. C., Ndikum, N.C., Nguiya, S. and Tokam, K.P.A.(2019). Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone. Earth and Planetary Physics., v.3, pp.26-32. DOI:10.26464/epp2019004.

Kumar, S., Pal, S.K., Vaish, J. and Shalivahan, S. (2015). Utilization of magnetic gradient method for coal fire mapping of Chatabad area, a part of Jharia Coal field, India. Jour. Engg. Geol. Special Publication, pp.170-176.

Kumar, S., Pal, S.K., Shalivahan, S., Panigrahi, D.C., Srivastava, S. and Vaish, J. (2016) Delineation of conceal Coal fire over Jharia coalfield, India. National Seminar on Environment and Development in Eastern India (status, Issues & Challenges) during 17-18 December, Ranchi, Ranchi University.

Leinov, E., Vinogradov, J. and Jackson, M.D. (2010) Salinity dependence of the thermoelectric coupling coefficient in brine-saturated sandstones: Geophysical Research Letters, v.37, L23308, DOI:10.1029/2010GL045379.

Likkason, O. K.(2014) Exploring and Using the Magnetic Methods, pp.141174, DOI: 10.5772/57163.

Lyngsie, S.B., Thybo, H. and Rasmussen, T.M. (2006) Regional geological and tectonic structures of the North Sea area from potential field modelling. Tectonophysics, v.413 (3), pp.147-170.

Marshall, D.J. and Madden, T.R. (1959) Induced polarization: A study of its causes: Geophysics, v.24, pp.790-816. DOI: 10.1190/1.1438659.

Minsley, B.J. (2007) Modeling and Inversion of Self-Potential Data, Phd thesis , Massachusetts Institute of Technology pp.1-251.

Mishra, R., Bahuguna, P. and Singh, V. (2011) Detection of coal mine í»re in Jharia coal í»eld using Landsat-7 ETM+ data. Int. Jour. Coal Geol., v.86, pp.73-78.

Mishra, R.K., Roy, P.N.S. and Singh, V.K. (2018) Detection and delineation of coal mine fire in Jharia coal field, India using geophysical approach: A case study, J. Earth. Syst. Sci., v.127(107). DOI:10.1007/s12040-0181010-8.

Naudet, V., Revil, A., Rizzo,E, Bottero, J.Y. and Bégassat ,P.( 2004) Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations: Hydrology and Earth System Sciences, v.8(1), 8-22, DOI: 10.5194/hess-8-8-2004.

Nourbehecht, B.(1963) Irreversible thermodynamics effects in inhomogeneous media and their applications in certain geoelectric problems. Ph.D. thesis, MIT.

Nyquist, J.E. and Corry, C. E.(2002) Self-potential: The ugly duckling of environmental geophysics, The Leading Edge, pp.446-451.

Pal, S.K., Vaish, J., Kumar, S. and Bharti, A. K.(2016) Coalfire mapping of East Basuria Colliery, Jharia coal field using Vertical Derivative Technique of Magnetic data. Jour. Earth Syst. Sci., v.125(1), pp.165-178.

Pal, S.K., Vaish, J., Kumar, S., Priyam, P., Bharti, A. K. and Kumar, R. (2017a) Downward continuation and Tilt Derivative of magnetic data for delineation of concealed coal fire in East Basuria Colliery, Jharia coal field, India. Jour. Earth Syst. Sci., v.126(53), pp.1-17.

Pal, S.K., Kumar, S., Vaish. J., Shalivahan, Srivastava, S., Mondal, S. and Kumar, S. (2017b) Depth estimation of subsurface coal fire over part Jharia coal field using magnetic method, 39 Annual convention of AEG, at BHU, Varanasi, October 5-7, 2017.

Pal, S.K. (2018) Mapping of coal mine cavities and coal fire fronts over Raniganj and Jharia coalfields using integrated Geophysical techniques. ETGRMI 2018, Department of Applied Geophysics, IIT(ISM), Dhanbad, March 9-11, 2018.

Pal, S. K. and Kumar, S. (2019) Subsurface structural mapping using EIGEN6C4 data over Bundelkhand craton and surroundings: An appraisal on kimberlite/lamproite emplacement. Jour. Geol. Soc. India, v.94(2), pp.188-196.

Phillips, J. D. (1996) Potential field continuation: past vs. modern methods, SEG Annual Meeting Extanded technical program in Society of Exploration Geophysicist, 66th annual international meeting, v.66, pp1411-1414.

Prakash, A., Gupta, R. P. and Saraf, A. K.(1997) A Landsat TM based comparative study of surface and subsurface fire in the Jharia Coal Field, India. Int. Jour. Remote Sens., v.18 (11), pp.2463-2469.

Prakash, A. and Gupta, R. P.(1998) Reflection aureoles associated with thermal anomalies due to subsurface mine fires in the Jharia Coalfield, India. Int. Jour. Remote Sens., v.19, pp.2619-2622.

Reid, A. B., Allsop, J.M., Granser, H., Millett, A.J. and Somerton, I.W. (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophys., v.55, pp.80-91.

Revil, A. (1999) Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials in colloids and granular porous media: a unified model: Jour. Coll. Interf. Sci., v.212, pp.503-522, DOI: 10.1006/jcis.1998.6077.

Revil, A. (2000) Thermal conductivity of unconsolidated sediments with geophysical applications: Jour. Geophys. Res., v.105, pp.16749-16768, DOI: 10.1029/2000JB900043.

Revil, A. and Jardani, A. (2009) The Self- Potential Method: Did the Ugly Duckling of Environmental Geophysics Turn into a Beautiful Swan? In: Proceedings of SAGEEP v.22, pp.795-800.

Revil, A., Karaoulis, M., Srivastava, S. and Byrdina, S. (2013) Thermoelectric self-potential and resistivity data localize the burning front of underground coal fires. Geophysics, v.78(5), pp.B259-fB273

Risgaard-Petersen, N., Revil, A., Meister, P.and Nielsen, L.P. (2012) Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment: Geochim. Cosmochim. Acta, v.92,pp. 1-13, DOI: 10.1016/j.gca.2012.05.036.

Rizzo, E., Suski, B., Revil, A., Straface, S. and Troisi, S. (2004) Self-potential signals associated with pumping-tests experiments: Jour. Geophys. Res., v.109, B10203, DOI:10.1029/2004JB003049.

Saraf, A.K., Prakash, A., Sengupta, S. and Gupta, R. P. (1995) Landsat-TM data for estimating ground temperature and depth of subsurface coalfire in the Jharia coalfield, India. Int. Jour. Rem. Sens., v.16, pp.2111-2124.

Sengupta, N.(1980) A revision of the Geology of the Jharia Coalfield with particular reference to distribution of coal seams, Ph.D. Thesis, Indian School of Mines, Dhanbad.

Shao, Z., Wang, D., Wang, Y. and Zhong, X. (2014) Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China. Jour. Appl. Geophys., v.104, pp.64-74.

Singh, R. and Pal, S.K. (2015) Detection of coal fire zone in Patherdih Colliery, Dhanbad using magnetic modeling. In: 52nd Annual Convention of Indian Geophysical Union, NCAOR, Goa, 3-5 November.

Singh, B. B., Srivardhan, V., Pal, S. K., Kanagaraju, S. K., Kumar, S. and Vaish, J. (2015) Particle Swarm Optimization Inversion of Self Potential Anomaly for Detecting Coal Fires, a Case Study - Jharia Coal Field. Third Sustainable Earth and Sciences conference in Celle, Germany, EAGE, DOI: 10.3997/2214-4609.201414282

Srivardhan , V., Pal, S.K., Vaish, J., Kumar, S., Bharti, A.K. and Priyam, P.(2016) Particle swarm optimization inversion of self -potential data for depth estimation of coal fires over East Basuria colliery, Jharia coal field, India. Environ. Earth Sci., v.75(8), pp. 1-12. DOI: 10.1007/s12665-0155222-9.

Srivastava, S. and Agarwal, B.N.P. (2009) Interpretation of self-potential anomalies by enhanced local wave number technique, Jour. App. Geophys., v.68(2), pp.259-268.

Thompson, D. T. (1982) EULDPH: A new technique for making computerassisted depth estimates from magnetic data. Geophys. v.47, pp.31-37.

Vaish, J. and Pal, S.K. ( 2013) Interpretation of Magnetic Anomaly data over East Basuria region using an Enhanced Local Wavenumber (ELW) Technique; 10th Biennial International Conference and Exposition on Petroleum Geophysics, Kochi, 23 - 25 November, pp.110.

Vaish, J. and Pal, S.K. (2015) Subsurface coal fire mapping of East Basuria Colliery, Jharkhand. Jour. Geol. Soc. India, v.86(4), pp.438-444. DOI:10.1007/s12594-015-0331-3

Vaish, J. and Pal, S.K. (2016) Subsurface Coal fire mapping of Patherdih Colliery a part of Jharia coal field, India. Jour. Geol. Soc. India, v.4, pp.8085. DOI: 10.17491/cgsi/2016/95899.

Zeng, H.L., Xu, D.S., and Tan, H.D. (2007) A model study for estimating optimum upward-continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China. Geophysics, v.72(4),pp. I45-I50. DOI: 10.1190/1.2719497.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)