Subsurface Structural Mapping using EIGEN6C4 Data over Bundelkhand Craton and Surroundings: An Appraisal on Kimberlite/Lamproite Emplacement

Authors

  • Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines), Dhanbad - 826 004
  • Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines), Dhanbad - 826 004

DOI:

https://doi.org/10.1007/s12594-019-1288-4

Keywords:

No Keywords.

Abstract

The Bundelkhand craton is surrounded by different mobile belts. The central Indian tectonic zone (CITZ) in the southern part is one of the prominent tectonic zones. CITZ is an important structural controlling factor for the Majhgawan and Hinota Kimberlite pipes. Several dyke swarms and quartz vein fractures are resulted due to volcanic and tectonic activity in the present study area. The objective of the present study is to delineate the subsurface lineaments using different edge enhancement techniques for mineral exploration in the future. Initially, First vertical derivative (FVD), total horizontal derivative (THD), tilt derivative (TDR) and theta (THETA) map have been applied to EIGEN6C4 Bouguer anomaly data. Composite lineament density map has been generated using all enhanced maps to analyze the effect of length of lineaments in the unit area. Upward continuation maps for different height have been generated to distinguish the shallower and deeper body effects. Further, Euler 3D deconvolution technique has been applied to Bouguer anomaly data to calculate the possible depth of associated lineaments. A comparative analysis of upward continuation depth and Euler's depth has been carried out zone wise.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-08-31

How to Cite

Pal, S. K., & Kumar, S. (2019). Subsurface Structural Mapping using EIGEN6C4 Data over Bundelkhand Craton and Surroundings: An Appraisal on Kimberlite/Lamproite Emplacement. Journal of Geological Society of India, 94(2), 188–196. https://doi.org/10.1007/s12594-019-1288-4

References

Blakely, R.J. (1996) Potential theory in gravity and magnetic applications: Cambridge (UK). Cambridge University Press, pp. 441.

Braitenberg, C., Wienecke, S. and Wang, Y. (2006) Basement structures from satellite-derived gravity field: South China Sea ridge. Jour. Geophys. Res., v. 111, B05407, doi:10.1029/2005JB003938.

Braitenberg, C., Mariani, P., Ebbing, J. and Sprlak, M. (2011) The enigmatic Chad lineament revisited with global gravity and gravity gradient fields. Geol. Soc., London Spec. Publ., No. 357, pp. 329-341.

Chalapathi Rao, N.V. (2006) Mesoproterozoic diamondiferous ultramafic pipes at Majhgawan and Hinota, Panna area, central India: Key to the nature of sub-continental lithospheric mantle beneath the Vindhyan basin. Jour. Earth System Sci., v. 115, pp. 161-183.

Chowdari, S., Singh, B., Nageswara Rao, B., Kumar, N., Singh, A.P. and Chandrasekhar, D.V. (2017) Structural mapping based on potential field and remote sensing data, South Rewa Gondwana Basin, India. Jour. Earth Syst. Sci., pp. 126-84.

Cooper, G.R.J. (2004) The textural analysis of gravity data using co-occurrence matrices. Comp and Geosc., v. 30, pp. 107-115.

Cooper, G.R.J. and Cowan, D.R. (2008) Edge enhancement of potential-field data using normalized statistics. Geophysics, v. 73, pp. H1-H4.

Cooper, G.R.J. and Cowan, D.R. (2011) A generalized derivative operator for potential field data. Geophys. Prospect., v. 59, pp. 188-194.

Cordell, L. (1979) Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico. Geol. Soc. Guidebook, 30th Field Conference, New Mexico, pp. 59-64.

Cordell, L. and Grauch, V.J.S. (1985) Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: Hinzc, W.J. (Ed.), The Utility of Regional Gravity and Magnetic Anomaly. Soc. Exploration Geophys., pp. 181-197.

Evjen, H.M. (1936) The place of the vertical gradient in gravitational interpretations. Geophysics, v.1, pp. 127-136.

Ganguli, S.S., Singh, S., Das, N., Maurya, D., Pal, S.K. and Rama Rao, J.V. (2018) Gravity and magnetic survey in south western part of Cuddapah Basin, India and its implication for shallow crustal architecture and mineralization. Jour. Geol. Soc. India, v. 93, pp. 419-430.

Ghosh, G. K. (2015) Interpretation of Gravity Anomaly and Crustal Thickness Mapping of Narmada-Son Lineament in Central India. Jour. Geol. Soc. India, v. 86, pp. 263-274.

Ghosh, G.K. and Singh, C.L. (2013) Intrusion and Upliftment of Mahakoshal Rocks between Vindhyan and Gondwana in Narmada Son Lineament, Central India. Jour. Geol. Soc. India, v. 81, pp. 556-564.

Gokarn, S.G., Rao, C.K., Gupta, G., Singh, B.P. and Yamashita, M. (2001) Deep crustal structure in central India using magnetotelluric studies. Geophys. Jour. Internat., v. 144, pp. 685-694.

Hood, P.J. and Teskey, D.J. (1989) Aeromagnetic gradiometer program of the geological survey of Canada. Geophysics, v. 54, pp. 1012-1022.

Jacobsen, B.H. (1987) A case for upward continuation as a standard separation filter for potential-field maps. Geophysics, v. 52 (8), pp. 1138-1148.

Keating, P. and Pinet, N. (2011) Use of non-linear filtering for the regionalresidual separation of potential field data. Jour, Appld. Geophysics, v. 73, pp. 315-322.

Krishnan, M.S. and Swami Nath, J. (1959) The Great Vindhyan Basin of northern India. Jour. Geol. Soc. India, v. 1, pp. 10-36.

Kumar, R., Bansal, A.R., Anand, S.P., Rao, V.K. and Singh, U.K. (2018a) Mapping of magnetic basement in Central India from aeromagnetic data for scaling geology. Geophys. Prospect., v. 66, pp. 226-239.

Kumar, U., Pal, S.K., Sahoo, S.D., Narayan, S., Saurav, Mondal S. and Gunguli, S.S. (2018b) Lineament mapping over Sir Creek offshore and its surroundings using high resolution EGM2008 Gravity data: An integrated derivative approach. Jour. Geol. Soc. India, v. 91(6), pp. 671-678.

Lyngsie, S.B., Thybo, H. and Rasmussen, T.M. (2006) Regional geological and tectonic structures of the North Sea area from potential field modelling. Tectonophysics, v. 413(3), pp. 147-170.

Malviya V. P., Arima M., Pati J. K. and Kaneko Y. (2006) Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in the Mauranipur area: subduction related volcanism in the Archaean Bundelkhand craton, central India. Jour. Mineral. Petrol. Sci., v. 10, pp. 199217.

Manjare, B.S. (2013) Mapping of Lineaments in Some Part of Betul District, Madhya Pradesh and Amravati District of Maharashtra, Central India Using Remote Sensing and GIS Techniques. International Jour. Advd. Remote Sensing and GIS, v. 2, pp. 333-340.

Miller, H. G. and Singh V. (1994) Potential field tilt - A new concept for location of potential field sources. Jour. Appld. Geophys., v. 32, pp. 213-217.

Mishra, D.C. and Kumar M. Ravi (2014) Proterozoic orogenic belts and rifting of Indian cratons: Geophysical constraints. Geoscience Frontiers, v. 5, pp. 25-41.

Mohan, M. Ram, Singh, S.P., Santosh, M., Siddiqui, M.A. and Balaram, V. (2012) TTG suite from the Bundelkhand Craton, Central India: Geochemistry, petrogenesis and implications for Archean crustal evolution. Jour. Asian Earth Sci., v. 58 pp. 38-50.

Nettleton, L.L. (1954) Regionals residuals and structures. Geophysics, v. 19(1), pp. 1-22.

Pal, S.K., Majumdar, T.J., Pathak, V.K., Satya Narayan, Kumar, U. and Goswami, O.P. (2016a) Utilization of high resolution EGM2008 gravity data for geological exploration over the Singhbhum-Orissa Craton, India. Geocarto Int., v. 31(7), pp. 783-802. DOI:10.1080/10106049.2015.1076064.

Pal, S. K., Satya Narayan, Majumdar T. J. and Kumar U (2016b) Structural mapping over the 850E ridge and surroundings using EIGEN6C4 High Resolution Global Combined Gravity Field Model: an integrated approach. Mari. Geophys. Res., v. 37, pp. 159-184. DOI 10.1007/s11001-016-92743.

Pal, S.K. and Majumdar, T.J. (2015) Geological appraisal over the SinghbhumOrissa Craton, India using GOCE, EIGEN6-C2 and in-situ gravity data. Int. Jour. Appld. Earth Observ. and Geoinfo., v. 35, pp. 96-119. DOI:10.1016/j.jag.2014.06.007.

Pal, S.K. and Majumdar, T.J. (2012) Geological appraisal of the 85oE Ridge, Bay of Bengal using GRACE and GOCE anomaly. First International GOCE Solid Earth Workshop, University of Twente, Netherlands, 16-17 October 2012, pp. 33-34.

Pati, J.K., Patel, S.C., Pruseth, K.L., Malviya, V.P., Arima, M., Raju, S., Pati, P. and Prakash, K. (2007) Geology and geochemistry of giant quartz veins from the Bundelkhand Craton, central India and their implications. Jour. Earth Syst. Sci., v. 116(6), pp. 497-510.

Pati, Jayanta K., Reimold, Wolf Uwe, Koeberl, Christian and Pati, Puniti, (2008) The Dhala structure, Bundelkhand craton, Central India-Eroded remnant of a large Paleoproterozoic impact structure. Meteoritics & Planetary Science, v. 43, pp. 1383-1398.

Qureshy, M.N. and Warsi, W.E.K., (1975) Role of regional gravity surveys in a concept oriented exploration programme. Jour. Geol. Soc. India, v. 16, pp. 44-54.

Rani, K., Guha, A., Subhendu, M., Pal, S. K. and Vinod Kumar, K. (2018) ASTER data, ground magnetic data, ground spectroscopy and Space based EIGEN 6C4 data for identifying potential zones gold sulphide mineralization in Bhukia, Rajasthan, India. Jour. Appld. Geophys. doi: 10.1016/j.jappgeo.2018.10.001

Rani, K., Guha, A., Pal, S. K. and Vinod Kumar, K. (2018) Satellite-derived regional apparent thermal inertia and gravity for mapping different rock types: potential analysis in parts of Banswara, Rajasthan, India. Jour. Geol. Soc. India, v. 92(6), pp. 671-678.

Reid, A.B., Allsop, J.M., Granser, H., Millet, A.J. and Somerton, I.W. (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, v. 55, pp. 80-91.

Satya Narayan, Sahoo S. D., Pal, S. K., Kumar, U., Pathak, V. K., Majumdar, T. J. and Chouhan, A. (2016) Delineation of structural features over a part of the Bay of Bengal using total and balanced horizontal derivative techniques. Geocarto Int., v. 32(1), pp. 1-16. DOI: 10.1080/ 10106049.2016.1140823.

Smith, C. B., Bulanova, G., Meenakshisundaram, Venkatasubramanian and Jaques, L. (2017) A tale of three lamproites, their diamonds and settings Bunder, Majhgawan and Argyle. 11th International Kimberlite Conference.

Tedla, G. E., Meijde, M. V. D., Nyblade, A. A. and Meer F. D. V. D. (2011) A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution. Geophys. Jour. Inter., v. 187, pp. 1-9 doi:10.1111/j.1365-246X.2011.05140.x

Telford, W.M., Geldart, L.P. and Sheriff, R.E. (1990) Applied geophysics. New York (NY): Cambridge University Press; pp. 770.

Thompson, D. T. (1982) EULDPH: A new technique for making computer assisted depth estimates from magnetic data. Geophysics, v. 47, pp. 3137.

Vaish, J. and Pal, S.K. (2015) Geological mapping of Jharia Coalfield, India using GRACE EGM2008 gravity data: a vertical derivative approach. Geocarto Int., v.30, pp.388-401. DOI:10.1080/10106049.2014.905637.

Vani, T., Naga Lakshmi,V., Ramakrishnarao, M.V., Randy Keller, G. and Subbarao K.V. (2013) Integration of Geophysical and Geological Data of Kimberlites in Narayanpet Maddur Field, Andhra Pradesh, India. Special Issue of the Jour. Geol. Soc. India, v. 2.

Verduzco, B., Fairhead, J.D., Green, C.M. and Mackenzie, C. (2004) New insights into magnetic derivatives for structural mapping. Lead. Edge, v. 23, pp. 116-119.

Verma, R.K. (1985) Gravity field, seismicity and tectonics of the Indian peninsula and the Himalayas. D. Reidel publishing company, v. 35.

Veeraiah, B., Ramadass, G. and Himabindu, D. (2009) A Subsurface Criterion for Predictive Exploration of Kimberlites from Bouguer Gravity in the Eastern Dharwar Craton, India. Jour. Geol. Soc. India, v. 74, pp. 69-77.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)