Modeling of Source Parameters and Moment Tensors of Local Earthquakes Occurring in the Eastern Indian Shield

Authors

  • CSIR- National Geophysical Research Institute, Uppal Road, Hyderabad – 500 007
  • CSIR- National Geophysical Research Institute, Uppal Road, Hyderabad – 500 007

DOI:

https://doi.org/10.1007/s12594-017-0671-2

Abstract

Earthquake source parameters and crustal Q are being estimated simultaneously through the inversion of S-wave displacement spectra from three-component recordings of ten local cratonic intraplate earthquakes from 3-6 broadband stations in the eastern Indian shield, wherein, an iterative Levenberg- Marquardt inversion technique is used. The estimated seismic moment (Mo) and source radii (r) vary from 7.4 x 1012 to 7.1 x 1014 N-m and 144.2 to 211.3 m, respectively, while estimated stress drops (Δσ) and multiplicative factor (Emo) values range from 0.11 to 4.13 MPa and 1.33 to 2.16, respectively. The corner frequencies range from 6.23 to 8.62 Hz while moment magnitudes vary from 2.44 to 3.57. The radiated seismic energy and apparent stresses range from 8.3 x 106 to 2.0 x 1010 Joules and 0.06 to 0.94 MPa, respectively, wherein the estimated corner frequencies and seismic moment satisfy the relation Mo ∞ fc -(3+g) for e = 12.7. Thus, the source scaling of these events clearly deviates from the self-similarity i.e. f-3. Estimated Zuniga parameters reveal that all selected events satisfy the partial stress drop model, which is in good agreement with the global observations. Our estimated crustal S-wave quality factors vary from 1091 to 4926 with an average of 3006, suggesting a less heterogeneous crustal structure underlying the study region. We also perform moment tensor inversion of five selected local events using ISOLA software, which reveals that the dominant deformation mode for the eastern Indian shield is left-lateral strike slip motion with minor normal dip-slip component on an almost vertical plane. This observation suggests that neotectonic vertical movements might have played a key role in generating these earthquakes. Our modeling also depicts that the seismically mildly active Singhbhum shear zone and Eastern Ghats mobile belt are characterized by the left-lateral strike motion while two events in the Chotanagpur half graben belt suggest a normal dip-slip motion along a south dipping plane. A north-south orientation of P-axis is found to be dominant in the area, which is consistent with the prevailing north-south compression over the Indian plate.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2017-06-01

How to Cite

Biswas, K., & Mandal, P. (2017). Modeling of Source Parameters and Moment Tensors of Local Earthquakes Occurring in the Eastern Indian Shield. Journal of Geological Society of India, 89(6), 619–630. https://doi.org/10.1007/s12594-017-0671-2

References

Abercrombie, R.E. and Rice, J.R. (2005) Small earthquake scaling revisited: can it constrain slip weakening? Geophys. Jour. Internat., v.162, pp.406-424.

Acharya, S. (1984) Stratigraphic and structural evolution of the rocks of the iron ore basins in Singhbhum-Orissa Iron Ore Province, India, CEISM Seminar, Indian Jour. Earth Sci. v.1, pp.19-28.

Acharyya, S.K., Gupta, A. and Orihashi, Y. (2010a) New U-Pb zircon ages from Palaeo-Mesoarchaean TTG gneisses of the Singhbhum Craton, eastern India. Geochemical Jour., v.44, pp.81-88.

Acharyya, S.K., Gupta, A. and Orihashi, Y. (2010b) NeoarchaeanPalaeoproterozoic stratigraphy of the Dhanjori basin, Singhbhum craton, Eastern India: and recording of a few U-Pb zircon dates from its basal part. Jour. Asian Earth Sci., v.39, pp.527-536.

Al-Heety, E. A. M. (2007) Historical seismicity of the stable Continental regions (SCRS) in the Arabian plate (preliminary study), Jour. Al-Anbar Univ. Pure Sci., v.1(1), pp.1-10.

Archuleta, R. J., Cranswick, E., Muellar, C. and Spudich, P. (1982) Source parameters of the 1980 Mammoth Lakes, California, Earthquake sequence, Jour. Geophys. Res., v.87, pp.4595–4607.

Assumpcao, M. (1998) Seismicity and stresses in the Brazilian passive margin, Bull. Seism. Soc. Amer., v.78(1), pp.160-169.

Assumpco, M., Schimmel, M. and Escalante. C. et. al. (2004) Intraplate seismicity in SE Brazil: stress concentration in lithospheric thin spots. Geophys. Jour. Internat., v.159, pp.390-399.

Behera, L., Sain, K. and Reddy, P.R. (2005) Evidence of underplating from seismic and gravity studies in the Mahanadi Delta of eastern India and its tectonic significance. Jour. Geophys. Res., v.109, pp.1-25.

Berteusen, K. A. (1977) Moho depth determinations based on spectral ratio analysis of NORSAR long-period P waves. Phys. Earth Planet. Interior, v.313, pp.13-326.

BruuBouchon, M. (1981) A simple method to calculate Green's functions for elastic layered media. Bull. Seismol. Soc. Amer., v.71, pp.959-971.

Brune, J. N. (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. Jour. Geophys. Res., v.75, pp.4997–5009.

Byerlee, J. (1978) Friction of rocks, Pure Appld.Geophys, v.116, pp.615-626.

Calais, E., Freed, A.M., Van Arsdale, R. and Stein, S. (2010) Triggereing of New Madrid seismicity by late –Pleistocene erosion, Nature, v.466, pp.608-611.

Campbell, D. L. (1978) Investigation of the stress –concentration mechanism for intraplate earthquakes, Geophys. Res. Lett., v.5, pp.477-479.

Chandra, U. (1977) Earthquakes of Peninsular India - a seismotectonic study, Bull. Seismol. Soc. Amer., v.67(5), pp.1387-1413.

Chetty, T.R.K. and Murthy, D.S.N. (1994) Regional tectonic framework of the Eastern Ghats Mobile Belt: a new interpretation. Proc. Workshop on Eastern Ghat Mobile Belt, Geol. Surv. India, v.44, pp.39-50.

Coutant, O. (1989) Program of numerical simulation AXITRA; Research Report, Laboratoire de Ge´ophysique Interne et Tectonophysique, Grenoble.

Dimri, V.P. (1992) Deconvolution and Inverse Theory: Application to Geophysical Problems, Elsevier Science Publishers, Amsterdam 230p.

Dunn, J.A. (1929) The geology of north Singhbhum. Mem. Geol. Surv. India, v.54, pp.166.

Fletcher, J. B. (1995) Source parameters and crustal Q for four earthquakes in South Carolina. Seismol. Res. Lett., v.66, pp.44-58.

Gangopadhyay, A. and Talwani, P. (2003) Symptomatic features of intraplate earthquakes, Seismol. Res. Lett., v.74, pp.863-883.

Ghosh, S.K. and Sengupta, S. (1990) The Singhbhum shear zone: structural transition and a kinematic model, Proc. Indian Acad. Sci., v.1, pp.229-247.

Gupta, S., Mohanty, W. K., Mandal, A. and Misra, S. (2014) Ancient terrane boundaries as probable seismic hazards: A case study from the northern boundary of the Eastern Ghats Belt, India. Geoscience Frontiers, v.5, pp.17-24.

Hanks, T. C. (1977) Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions, Pure Appld. Geophys., v.115, pp.441-458.

Havskov, J. and Ottemoller, L. (2003) SEISAN: the earthquake analysis software manual, pp.203.

Holdsworth, R.E., Hand, M., Miller, J.A. and Buick, I.S. (2001) Continental reactivation and reworking: an introduction. In: J.A. Miller, R.E., Holdsworth, I.S. Buick and M. Hand (Eds.), Continental Reactivation and Reworking. Geol. Soc. London, Spec. Publ., v.184, pp.1-12.

Johnston, A.C. and Kanter, L.R. (1990) Earthquakes in stable continental crust. Scientific American, v.262, pp.54-68.

Kanamori, H.K. and Anderson, D.L. (1975) Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Amer., v.65, pp.1073-1095.

Kayal, J. R., Srivastava, V. K., Bhattacharya, S. N., Khan, P. K. and Chatterjee, R. (2009) Source Parameters and Focal Mechanisms of Local Earthquakes: Single Broadband Observatory at ISM Dhanbad. Jour. Geol. Soc. India, v.74, pp.413-419.

Khan, P. K., Biswas, B., Samdarshi, P. and Prasad, R. (2011) Seismicity and the coda-Q variation in eastern Indian shield region, Indian Jour Geosci., v.65(2), pp.43-50.

Kikuchi, M. and Kanamori, H. (1991) Inversion of complex body waves, III, Bull. Seismol. Soc. Amer., v.81, pp.2335–2350.

Krishna, B.N. and Negi, J.G. (1973) Rift valleys beneath Deccan Trap, India. Geophys. Res. Bull. Hyderabad, v.11, pp.207-237.

Kumar, M., Yallanki, S., Biswas, K. and Mandal, P. (2015) Evidence for nonselfsimilarity in the Mw7.7 2001 Bhuj earthquake sequence, Natural Hazards, v.75, pp.1577-1598 (DOI 10.1007/s11069-014-1381-3).

Lenardic, A., Moresi, L. and Muhlhaus, H. (2000) The role of mobile belts for the longevity of deep cratonic lithosphere: the crumple zone model, Geophys. Res. Lett., v.27, pp.1235-1238.

Mahapatro, S. N., Tripathy, A. K., Nandi, J. K. and Roy, A. (2009) Coexisting Ultramylonite and Pseudotachylyte from the Eastern Segment of the Mahanadi Shear Zone, Eastern Ghats Mobile Belt. Jour. Geol. Soc. India, v.74, pp.679-689.

Malservisi, R., Hugentobler, U., Wonnacott, R. and Hackl, M. (2013) How rigid is a rigid plate? Geodetic constraint from the TrigNet CGPS network, South Africa, Geophys. Jour. Internat., v.192(3), pp.918-928.

Mandal, P., Manglik, A. and Singh, R. N. (1997) Intraplate stress distribution beneath the Killari region, India. Jour. Geophy. Res., v.102(11), pp.719-729.

Mandal, P., Srivastava, J., Joshi, S., Kumar, S., Bhunia, R. and Rastogi, B.K. (2004) Low coda-Qc in the epicentral region of the 2001 Bhuj Earthquake of Mw 7.7, Pure Appld. Geophys., v.161, pp.1635-1654.

Mandal, P. and Biswas, K. (2016) Teleseismic receiver function modeling of the eastern Indian craton, Phys. Earth Planet. Int., DOI: 10.1016/ j.pepi.2016.07.002.

Mandal, P., Singh, B., Gupta, A., and Nagendra, P. (2017) Modeling of source parameters of the 15 December 2015 Deogarh earthquake of Mw4.0, Jour. Geol. Soc. India, v.89, pp.363-368. DOI:10.1007/s12594-017-0616-9

Mazumder, R., Van Loon, A. J., Mallik, L., Reddy, S. M., Arima, M., Altermann, W., Eriksson, P. G. and De, S. (2012) Mesoarchaean-Palaeoproterozoic stratigraphic record of the Singhbhum crustal province, eastern India: a synthesis; In: Mazumder, R. and Saha, D. (Eds.) Palaeoproterozoic of India. Geol. Soc. London, v.365, pp.31-49.

Mohanty, W. K., Prakash, R., Suresh, G., Shukla, A. K., Yanger Walling, M. and Srivastava, J. P. (2009) Estimation of Coda Wave Attenuation for the National Capital Region, Delhi, India Using Local Earthquakes, Pure Appld. Geophys., v.166, pp.429-449.

Mooney, W. D., Ritsema, J. and Hwang, Y. (2012) Crustal seismicity and maximum earthquake magnitudes (Mmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere. Earth Planet. Sci. Lett., v.357/358, pp.78-83.

Morgan, W. J. (1968) Rises, trenches, great faults, and crustal blocks. Jour. Geophys. Res., v.73, pp.1959-1982.

Morrow, C., Radney, B. and Byerlee, J.D. (1992) Frictional strength and the effective pressure law of montmorillonite and illite clays: fault mechanics and transport properties of rocks. In: Evans, B. and Wong, T.F. (Eds.), Fault Mechanics and Transport Properties of Rocks. Academic Press, San Diego, California, pp.69-88.

Mukhopadhyay, J., Beukes, N.J., Armstrong, R.A., Zimmermann, U., Ghosh, G. and Medda, R.A. (2008) Dating the oldest Greenstone in India: a 3.51 Ga precise U-Pb SHRIMP Zircon Age for Dacitic Lava of the Southern Iron Ore Group, Singhbhum Craton, Jour. Geol., v.116, pp.449-461.

Naqvi, S.M. and Rogers, J.J.W. (1987) Precambrian Geology of India. Oxford Univ. Press Inc. 223p.

Oldham, T. (1883) A catalogue of Indian earthquakes from the earliest times to the end of 1869 A.D., Mem. Geol. Surv. India., v.XIX, Part 3.

Rajendran, C.P., Rajendran, K. and John, B. (1996) The 1993 Killari (Latur) central India earthquake: an example of fault reactivation in Precambrian crust, Geology, v.24(7), pp.651-654.

Rajendran, C. P., Rajendran, K., Thakkar. M. and Goyal, B. (2008) Assessing the previous activity at the source zone of the 2001 Bhujearthquake based on the near-source and distant paleo-seismological indicators. Jour. Geophys. Res., v.113, pp.1-17.

Saha, A.K. (1994) Crustal evolution of Singhbhum–North Orissa, Eastern India. Mem. Geol. Soc. India, no.27, pp.341.

Saha, A., Lijesh, S. and Mandal, P. (2012) Simultaneous estimation of earthquake source parameters and crustal Q value from broadband data of selected aftershocks of the 2001 Mw 7.7 Bhuj earthquake, Jour. Earth Syst. Sci., v.121, pp.1421-1440.

Sandiford, M .and Egholm, D. L. (2008) Enhanced intraplate seismicity along continental margins: Some causes and consequences. Tectonophysics, v.457, pp.197-208.

Sarkar, A.N. (1982) Precambrian tectonic evolution of eastern India: A model of converging microplates. Tectonophysics, v.86, pp.363-397.

Sarkar, A.N. and Chakraborty, D.K. (1982) One orogenic belt or two? A structural reinterpretation supported by Landsat data products of the Precambrian metamorphics of Singhbhum, Eastern India, Photogrammetria, v.37, pp. 185-201.

Savage, J.C. and Wood, M.W. (1971) The relation between apparent stress and stress drop. Bull. Seism. Soc. Amer., v.61, pp.1381-1386.

Schulte, S.M. and Mooney, W.D. (2005) An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts, Geophys. Jour. Internat., v.161, pp.707-721.

Seismic Analysis Code (SAC2000) 2000(http://www.iris.edu/manuals/sac/ SAC_Home_Main.html)280.

Sibson, R. H. (1984) Roughness at the base of the seismogenic zone: contributing factors. Jour. Geophys. Res., v.89, pp.5791-5799.

Singh, S.K. and Ordaz, M. (1994) Seismic energy release in Mexican subduction zone earthquakes, Bull. Seismol. Soc. Amer., v.84(5), pp.1533-1550.

Singh, S.K., Bansal, B.K., Bhattacharya, S.N., Pacheco, J.F., Dattatrayam, R. S., Ordaz, M., Suresh, G., Kamal, and Hough, S.E. (2003) Estimation of Ground Motion for Bhuj (26 January 2001; Mw 7.6) and for Future Earthquakes in India, Bull. Seismol. Soc. Amer., v.93(1), pp. 353–370.

Singh, S.K., Garcia, D., Pacheco, J.F., Valenzuela, R., Bansal, B.K. and Dattatrayam, R.S. (2004) Q of the Indian Shield, Bull. Seismol. Soc. Amer., v.94(4), pp.1564–1570.

Sokos, E. N. and Zahradní­k, J. (2008) ISOLA a FORTRAN code and a MATLAB GUI to perform multiple-point source inversion of seismic data. Comput. Geosci., v.34, pp.967–977.

Sokos, E. N. and Zahradní­k, J. (2013) Evaluating Centroid-Moment-Tensor uncertainty in the new version of ISOLA software, Seismol. Res. Lett., v.84(4), pp. 656-665.

Sykes, L. (1978) Intraplate seismicity, reactivation of pre-existing zones of weakness, alkaline magnetism, and other tectonism postdating continental fragmentation. Reviews of Geophysics and Space Physics, v.16, pp.621-688.

Tait, J., Zimmermann, U., Miyazaki, T., Presnyakov, S., Chang, Q., Mukhopadhyay, J. and Sergeev, S. (2011) Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton, Geological Magazine, v.148, pp.340-347.

Talwani, P. (1999) Fault geometry and earthquakes in continental interiors. Tectonophysics, v.305, pp.371-379.

Zahradnik, J., Serpetsidaki, A., Sokos, E. and Tselentis, G.A. (2005) Iterative deconvolution of regional waveforms and a double-event interpretation of the 2003 Lefkada Earthquake, Greece, Bull. Seismol. Soc. Amer., v.95(1), pp.159–172.

Zuniga, F. R. (1993) Frictional overshoot and partial stress drop, which one? Bull. Seismol. Soc. Amer., v.83, pp.939-944.

Most read articles by the same author(s)